# The Evaluation of the Italian Start Up Act in Lombardy

Fabiana Mancuso 3098300 Francesca Nicoli 3126120 Elena Verzellesi 3099174

#### Abstract

The paper investigates the impact of the Italian Start Up Act, namely how much state aid, given to innovative enterprises from 2012 onward, improves Italy's digital transition. We construct a panel data considering observations from 2008 to 2018 and including balance sheet variables of over 160,000 small and medium-companies. We run fixed effect estimations to try to disentangle the effect of the policy comparing firms that registered to the Start Up Act with similar enterprises that did not. Results show a high positive effect on the variables considered but the violation of the parallel trend assumption suggests that we were not successful in building a good control group. In light of this, we follow Callaway and Sant'Anna's approach (2021) to construct event studies on the evolution of balance sheet variables for innovative enterprises. We find that firms experience high growth when receiving incentives from the government but not all of them are able to sustain the trend after leaving the policy.

# 1 Introduction

The Great Recession of 2008 followed by the European crisis of sovereign debts left Italy into a fragile socio-economic situation, in which high unemployment went hand in hand with low wages and low incentives to open enterprises[1]. In 2012, Italian government prepared a plan of economic reconstruction called "Salva Italia" law decree. Among the policies presented, the Start Up Act aims at transforming Italy into a more favourable environment for innovation. In a world in which the promotion of digital transition plays a central role, the StartUp Act incentivises the creation and development of enterprises based on creativity, innovation, and the use of new techology[2].

Italy hosts a high percentage (97.7%[3]) of micro and small firms with respect to the other OECD countries, giving the policy a wide range of application. In light of recent researches suggesting that small and medium-sized enterprises may be the drivers for economic growth [4], the Start Up Act represents the attempt of the Italian government to keep up with the other European countries' economic growth and productivity rates [5], especially in the field of innovation and technology.

#### 1.1 Eligibility criterias

Eligible companies are denominated "Young Innovative Companies" (YICs) and receive a number of incentives which can help them to spur innovation-oriented investment and encourage youth employment [6].

To enter the policy, a company should meet the following criteria. The enterprise should be a limited company not publicly listed, either Italian or a branch of an EU company registered in Italy. The establishment date must be within five years and the headquarter must be in Italy. Its annual revenue should be less than 5 million euros and the mission of the company must include a statement on innovation. Lastly, at least one of the following elements should be present:

- 1. At least 15% of revenues should be invested in R&D;
- 2. 1/3 of the employees must hold a PhD or be graduates or researchers and/or 2/3 of them must hold a Master's degree;
- 3. The enterprise must be a holder, a depositor or a licensee of a patent or owner or author of registered software.

#### 1.2 Benefits

Among the different benefits given by the Start Up Act, three are the main ones [7]. Eligible companies receive tax incentives for equity investment; innovative startups get a 30% tax credit and fiscal deduction as legal entities. In addition, they are allowed to obtain a simplified procedure to get credit guarantees on bank loans, which covers up to 80% of the bank loans and up to a maximum of 2.5 million euros, provided through a Government Fund called "Fondo Centrale di Garanzia". Finally innovative companies are granted with flexible labor rules. There is no limit to duration and total number of renewals and no obligation to keep a fixed ratio between fixed-term and open-ended contracts [8].

#### 1.3 Our research

The aim of this research is to evaluate the impact of the Start Up Act. We run a panel fixed effect estimation on some entries of the companies' balance sheets, which we use as expression

of economic performance. After ten years from the start of the policy, we try to encompass its effectiveness in the small and medium term.

The peculiarity when analyzing the Start Up Act is that its economic and social performance is monitored every three months by the Ministry of Enterprises and Made in Italy, which gathers all information in "Registro Imprese". This allows the government to keep track of the effects of the policy, see if the initial objectives are satisfied, and eventually improve the decree.

## 2 Academic Literature

Earlier studies on the impact of the Italian Start Up Act display significant results both on our area of investigation and among other economic achievements.

The OECD research (2018) shows that innovative firms increase their financing through venture capital due to an improvement of their economic credibility. They experience an increase around 10-15% in total revenues, value added and total assets. Intangible capital, which represent an important indicator for startups' innovative achievements, increase in proportion to total capital. The same paper analyzes the firms' survival probability through a logit model and depicts a decreasing trend of failure for firms that enter the policy with respect to those that do not[5].

A research conducted by Politecnico di Milano (2019) reports an analysis on the relationship between access to a Government-guaranteed (GG) bank loan program and fiscal incentives for venture capital (VC) equity investments[6].

The Microeconomic Problem Evaluation carried out by Biancalani, Czarnitzki and Riccaboni (2021) through the implementation of a conditional difference-in-difference model displays positive results of the Start Up Act. Treated companies result to have an easier access to equity and debt capital, impacting multiple economic dimensions of the business[7].

# 3 Data and Methodology

#### 3.1 Data

The analysis of the Start-up Act exploits two main resources. The primary dataset, containing observations regarding 160,625 firms, has been downloaded by AIDA website. We consider as small-medium firms all the companies that at least in one of the years observed has less than 250 employees, returns on sales lower than 50 million euros and total assets lower than 43 million euros. We merge the AIDA dataset with the one containing the year in which each firm entered the Act (only for innovative firms), available on the "StartUp Registro Imprese" database. We consider the firms that did not provide the year of registration to the policy innovative from the year of establishment.

The analysis takes into consideration all startups and small-medium firms established in Lombardy between 2008 and 2018. For each enterprise we report 9 observations in relative terms, from the last year in which the balance sheet is available until a maximum of eight years before. It is reported the year of the first available balance sheet, the year of establishment and the year in which each observation is taken. To each firm it is assigned its "age", which is the difference between the year of the last balance sheet available and the first one. Each enterprises have an identification number that goes from 1 to 160,635 and identifies them uniquely, together with the fiscal code. Companies are classified by their Ateco code (2007) which defines to which sector the firms belong to. We create a time-invariant dummy variable "EverTreated" which displays 1 if the firm applied the policy at least in one year of the sample, and 0 if it has never been treated. Finally, we construct a time-variant dummy variable "Post" which is equal to 1 whenever the firm in treated in the year considered, and 0 otherwise.

We select 11 variables of interest with the aim of describing the evolution of small-medium firms from an economic and social point of view. We report the number of employees and their labor productivity in order to track whether the prerequisites of including PhD students or master students as employees is successful. It is also reported the annual total expense of each firm in salaries. To evaluate business performance we use EBITDA (earnings before interest, taxes, depreciation, and amortization), the value of total assets and the value of total intangible assets. The latter is especially important when analysing startups since their activity is based on generating value through non-physical assets, such as patents and licenses[9]. We use ROA (Return on Assets) as measure of profitability. In order to evaluate financial performance, we report total debt, debt to equity ratio and debt from banks over total revenues. Lastly, we include in the set of dependent variables of interest the cost of research and publishing, which represents an important factor to track the Start Up Act from a reaserch and development perspective.

For each variable, the corresponding unit of measure is displayed in Figure 7.

#### 3.2 Methodology

The research evaluation is based on a counterfactual analysis. Our aim is to find the Average Treatment Effect on the Treated (ATT), namely to compare startups and small and mediumsized firms that applied to the policy with those that did not. The impact of the Start Up Act can be measured by examining what would have happened to treated firms if they did not apply to the policy.

One of the main problems when evaluating the the Start Up Act is that firms register to the policy in different points in time, hindering the possibility to identify a single year in which all the companies in the treatment group start the treatment. We begin by analyzing one static picture of the impact of the Start Up Act to get a general, simplified overview. Then, we add new factors to reach a realistic model.

The first approach is to run a panel fixed-effect estimation which controls for the unobserved heterogeneity across firms. We start by ignoring all the observations of firms that registered to the Start Up Act before and after 2017. The new, reduced panel data has the original control group but considers as treatment group only the enterprises that became innovative exactly in 2017. Using as baseline 2017, we are able to run a standard Difference-in-Differences model following Equation 1. The estimation includes dummy variable  $Treat_{i,t}$  which is equal to 1 when a firm is registered to the policy, and dummy variable  $After_t$  which displays one whenever the observation is taken in 2017 or after.  $Y_{i,t}$  represents a given dependent variable, among the eleven ones presented in paragraph 3.1. Throughout the whole analysis, we consider the logarithm of the outcome variables in order to interpret the coefficients of the regressions as semi-elasticities.  $\gamma_i$  represent the firms' fixed effect whereas  $Age_t$  and  $Year_t$  control for firms' specific age and year. We check the intuition of using the fixed effect instead of a random estimation through the Hausman test reported in Figure 8.

$$log(Y_{i,t}) = \alpha + \beta_1 Treat_{i,t} + After_t + \gamma_i + Age_t + Year_t + \epsilon_{i,t}$$
(1)

We run the same regression considering only the firms that belong to Ateco Codes sectors 62, 63 and 72 in order to verify whether the Start Up Act has different impacts among the distinct segments of the market. We choose these sectors as we think they represent best the technology and scientific sectors and we expect they will display higher growth with respect to other sectors when helped through tax relief and incentives.

Up to now, we considered a reduced version of the original panel data in order to grasp the effect of the Start Up Act only on the firms that became innovative in 2017. A suitable empirical strategy is to restore the original dataset and to control for unobserved heterogeneity across treated and untreated firms through a second panel-fixed effect estimation. Differently from the previous regression, we include all the enterprises that registered to the Start Up Act from 2012 up to 2021. To address the issue of multiple time periods, we include in the model a set of control dummy variables. The estimation is based on Equation 2.  $EverTreated_i$  is a time-invariant dummy variable equal to one whenever a firm has registered to the policy at least one year in the sample and  $OpenYear_i$  represents a set of dummy variables that controls for the year of establishment of the firms.

$$log(Y_{i,t}) = \alpha + \beta_1 Treat_{i,t} + \gamma_i + Age_t + Year_t + OpenYear_i * Age_t + OpenYear_i * EverTreated_i + Age_t * EverTreated_i + \epsilon_{i,t}$$
(2)

An underlying assumption when carrying out a counterfactual analysis is that, in absence of treatment, the difference between the control and the treatment group is constant over time. When downloading data from AIDA, we filtered small and medium-enterprises through requirements as similar as possible to the criteria of the Start Up Act. The aim was to build a control group that matched as close as possible the treatment group in terms of characteristics. After performing some descriptive analysis, we reach the conclusion that firms that apply to the policy in the first place are significantly different from those that do not.

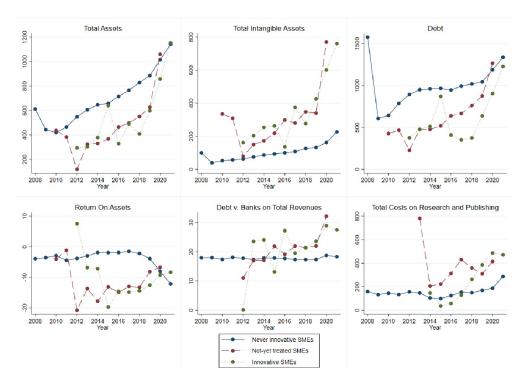



Figure 1: Average trend of the dependent variables for three groups

Figure 1 provides an immediate visual interpretation by displaying the evolution of the mean of 6 of the dependent variables of interest as a function of the years in the sample. The blue solid line corresponds to small and medium-sized enterprises that never registered to the policy. The red dashed line refers to firms that will become innovative in the future, but are not yet in the year considered. The green dotted line represents the trend of innovative SMEs. If we were successful in building a good control group we should see the blue and the red line following similar, parallel trend. As displayed very clearly from Figure 1, it is not the case. In addition, the comparison between not-yet treated firms and never treated ones seems to suggest that the policy selected companies already performing better than the control group. Looking at figure 1 alone would imply that the Start Up Act does not have positive effects perse.

In light of this result, we need to change the control group. The proposed solution is to apply Callaway and Sant'Anna's (2021) approach. In their own words, they try to construct "Difference-in-Differences methods in the case where there are more than two periods and units can become treated at different points in time-a commonly encountered set up in empirical work in economics". The aim becomes to find the Average Treatment Effect in period t for the group of units first treated in period g, using as control group the not-yet treated firms. Our analysis focuses on the event study of the dependent variables of interest, which allows to examine the evolution up to 7 years before the registration and up to 6 years after.

## 4 Results

#### 4.1 The evolution of the number of small and medium-sized enterprises

Figure 2 shows the yearly trend of the number of active small and medium-sized enterprises for each year (right y-axis) and the one of innovative firms through a line (left y-axis).

The number of active SMEs increases from 2008 to 2017 whereas from that year on it suffers a significant drop. The number of innovative firms experiences almost absent growth from the beginning of the policy until 2015. It then registers a steep increase from 2016 until 2020 and it drops smoothly only at the beginning of COVID-19 crisis. These differences in the evolution of innovative and not-innovative firms can be explained by the fact that the Start Up Act required a relatively long time to diffuse as an opportunity for YICs but then demonstrated to provide effective support during the 2020 crisis.

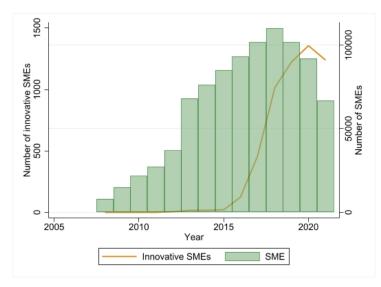



Figure 2: Evolution of numbers of SME enterprises

#### 4.2 The effect of the Start Up Act on firms that registered in 2017

Figure 3 presents the reduced output of the fixed effect estimation using as baseline 2017, as explained in Equation 1 (complete regression in Figure 9). The significant coefficients of the variable of interest Treat display very high values, signaling a beneficial effect of the Start Up Act.

According to this regression, the policy is successful in increasing total intangible assets and total assets respectively around 138% and 91%. Innovative firms display higher credibility and finance their activity through debt around 81% more with respect to non-innovative enterprises. They invest more in their employees providing them wages higher than 92%. These results seem to be too positive to be realistic and should be taken merely as reference. Indeed, Equation 1 provides a static snapshot of the firms that became innovative exactly in 2017, ignoring all the other enterprises that registered to the Start Up Act at any other point in time.

| VARIABLES (log) | Labor<br>Productivity | Number of<br>employees | Ebitda    | Total Assets | Total<br>Intangible<br>Assets | Debt      | Cost of labor | Return on<br>Assets | Debt to<br>Equity ratio | Debt v.<br>banks on<br>Total<br>Revenues | Research<br>and<br>publishing |
|-----------------|-----------------------|------------------------|-----------|--------------|-------------------------------|-----------|---------------|---------------------|-------------------------|------------------------------------------|-------------------------------|
| Treat           | -0.0253               | 0.5434***              | 0.4900**  | 0.9138***    | 1.3752***                     | 0.8077*** | 0.9164***     | -0.1174             | -0.1420                 | -0.5302                                  | 0.7095**                      |
|                 | (0.1513)              | (0.0953)               | (0.2031)  | (0.1430)     | (0.1552)                      | (0.1257)  | (0.1405)      | (0.2704)            | (0.3100)                | (0.3849)                                 | (0.3583)                      |
| After           | -0.4517***            | 0.1186                 | 0.5372*** | 0.4318***    | -0.4664***                    | 0.7284*** | 1.2195***     | -0.2906***          | -0.3126***              | 1.0255***                                | -0.7699*                      |
|                 | (0.1177)              | (0.1211)               | (0.1486)  | (0.1303)     | (0.1786)                      | (0.1153)  | (0.0403)      | (0.0394)            | (0.0905)                | (0.0989)                                 | (0.4508)                      |
| Constant        | 2.0402***             | 1.3398***              | 2.7264*** | 3.0656***    | 2.0874***                     | 4.2370*** | 2.7552***     | 1.9933***           | 0.2023***               | 1.1059***                                | 3.7182***                     |
|                 | (0.1174)              | (0.1202)               | (0.1479)  | (0.1290)     | (0.1761)                      | (0.1148)  | (0.0360)      | (0.0292)            | (0.0657)                | (0.0727)                                 | (0.3119)                      |
| Observations    | 368,227               | 369,746                | 495,580   | 673,156      | 539,291                       | 712,515   | 431,858       | 385,520             | 154,185                 | 142,998                                  | 8,349                         |
| R-squared       | 0.0073                | 0.0798                 | 0.0956    | 0.0637       | 0.0082                        | 0.1394    | 0.1736        | 0.0034              | 0.0040                  | 0.0170                                   | 0.0160                        |
| Number of id    | 86,741                | 86.581                 | 118,918   | 140.320      | 129,268                       | 143,918   | 94,102        | 120,109             | 57,592                  | 54,537                                   | 3,988                         |

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

# Figure 3: Fixed effect estimation using as baseline 2017 Note: control for year and age dummies. Complete regression as in Equation 1

Figure 4 provides the results of Equation 1 for firms that belong to the technology and scientific sector (complete regression in Figure 10). Results show that the Start Up Act has different impacts depending on the industry. Overall, the policy is successful in increasing the level of all the variables analysed in the previous regression. The unique feature of these sectors is the increase around 161% in the amount of money invested in research and publishing, which is in line with expectations.

| VARIABLES (log) | Labor<br>Productivity | Number of<br>employees | Ebitda    | Total Assets | Total<br>Intangible<br>Assets | Debt      | Cost of labor | Return on<br>Assets | Debt to<br>Equity ratio | טפטניע.<br>banks on<br>Total<br>Revenues | Research<br>and<br>publishing |
|-----------------|-----------------------|------------------------|-----------|--------------|-------------------------------|-----------|---------------|---------------------|-------------------------|------------------------------------------|-------------------------------|
| Treat           | 0.2401                | 0.4706***              | 0.4557    | 0.7140***    | 1.0045***                     | 0.5971*** | 0.6973***     | -0.2969             | -0.3055                 | -1.2158*                                 | 1.6147***                     |
|                 | (0.2525)              | (0.1631)               | (0.3236)  | (0.2235)     | (0.2199)                      | (0.1749)  | (0.2289)      | (0.6071)            | (0.4360)                | (0.6662)                                 | (0.4920)                      |
| After           | -0.0553               | 0.5041***              | 0.7012*** | 0.9066***    | 0.6880***                     | 0.8821*** | 1.7879***     | -0.2440             | -0.6460                 | 0.3262                                   | -2.4882***                    |
|                 | (0.0601)              | (0.0389)               | (0.0845)  | (0.0683)     | (0.0947)                      | (0.0547)  | (0.1883)      | (0.1890)            | (0.4869)                | (0.4988)                                 | (0.8504)                      |
| Constant        | 1.1123***             | 0.7278***              | 2.1483*** | 1.7273***    | 0.9464***                     | 3.2312*** | 2.2636***     | 2.0802***           | 0.2753                  | 1.4082***                                | 5.1767***                     |
|                 | (0.1045)              | (0.0627)               | (0.1447)  | (0.0980)     | (0.1164)                      | (0.0905)  | (0.1711)      | (0.1343)            | (0.3508)                | (0.3433)                                 | (0.6900)                      |
| Observations    | 20,141                | 20,218                 | 27,103    | 34,767       | 28,350                        | 36,826    | 23,163        | 19,815              | 8,022                   | 7,536                                    | 494                           |
| R-squared       | 0.0168                | 0.1582                 | 0.1014    | 0.0833       | 0.0211                        | 0.1885    | 0.2058        | 0.0052              | 0.0088                  | 0.0209                                   | 0.1467                        |
| Number of id    | 4,644                 | 4,668                  | 6,302     | 7,257        | 6,719                         | 7,495     | 4,861         | 6,120               | 2,974                   | 2,851                                    | 238                           |
| Robust standard | errors in pare        | ntheses                |           |              |                               |           |               |                     |                         |                                          |                               |

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Figure 4: Fixed effect estimation using as baseline 2017 using Ateco codes 62, 63 and 72 Note: control for year and age dummies. Complete regression as in Equation 1

## 4.3 The Impact of the Start Up Act using a fixed effect estimation

Figure 5 presents the regression explained in Equation 2 and Figure 11 displays the complete regression. The model suggests that the Start Up Act leads to an increase of around 27% of total assets and 28% of intangible assets. Innovative SMEs finance their activity through debt around 22% more than non-innovative SMEs, signaling a sharp increase of the enterprises' financial credibility. This model includes a set of control variables accounting for the trend of firms ever entering into the policy, namely the fact that firms register to the policy at different points in time. Nonetheless, it compares innovative firms with firms that have never been innovative, which does not represent an accurate control group as shown in Figure 1.

| VARIABLES (log)   | Labor<br>Productivity | Number of employees | Ebitda    | Total Assets | Total<br>Intangible<br>Assets | Debt      | Cost of labor | Return on<br>Assets | Debt to<br>Equity ratio | Debt v.<br>banks on<br>Total<br>Revenues | Research<br>and<br>publishing |
|-------------------|-----------------------|---------------------|-----------|--------------|-------------------------------|-----------|---------------|---------------------|-------------------------|------------------------------------------|-------------------------------|
| Treat             | 0.0149                | 0.0480              | -0.0236   | 0.2737***    | 0.2841***                     | 0.2158*** | 0.1172*       | -0.1527*            | 0.2645**                | -0.2191                                  | 0.0545                        |
|                   | (0.0559)              | (0.0370)            | (0.0779)  | (0.0611)     | (0.0705)                      | (0.0541)  | (0.0605)      | (0.0812)            | (0.1259)                | (0.1417)                                 | (0.1599)                      |
| Constant          | 1.8957***             | 1.3413***           | 2.9952*** | 3.2438***    | 1.9815***                     | 4.5961*** | 3.1650***     | 1.8948***           | 0.0781*                 | 1.4783***                                | 3.3943***                     |
|                   | (0.0893)              | (0.0835)            | (0.1096)  | (0.0934)     | (0.1212)                      | (0.0835)  | (0.0247)      | (0.0182)            | (0.0414)                | (0.0453)                                 | (0.1840)                      |
| Observations      | 371,741               | 373,293             | 498,713   | 679,084      | 544,950                       | 718,585   | 435,395       | 388,234             | 155,887                 | 144,472                                  | 9,015                         |
| <b>R</b> -squared | 0.0077                | 0.0878              | 0.0980    | 0.0695       | 0.0177                        | 0.1445    | 0.1784        | 0.0037              | 0.0051                  | 0.0196                                   | 0.0579                        |
| Number of id      | 87,581                | 87,379              | 119,826   | 141,493      | 130,407                       | 145,107   | 94,917        | 120,942             | 58,111                  | 54,999                                   | 4,240                         |
| Robust standard   | errors in pare        | entheses            |           |              |                               |           |               |                     |                         |                                          |                               |

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Figure 5: Fixed effect estimation with complete panel data Note: control for year and age dummies, and interaction terms as in Equation 2

#### 4.4 Difference-in-Difference model in multiple time periods

In this section, we try to assert the effect of the Start Up Act changing the definition of the control group. By using Callaway and Sant'Anna's approach (2021) [10], we use as comparison group the not-yet treated enterprises rather than the never treated ones. This allows us to study the evolution of economic variables using as baseline the year of registration to the policy for each firm.

Figure 6 presents some of the results of the study event for the dependent variables that display significant pre-and post-average treatment (complete event study from Figure 14 on). An underlying assumption of event studies is that the pre-treatment periods should be constant and close to zero. Hence, it is appropriate to discard from interpretations the evolution of number of employees, cost of labor, and return on assets.

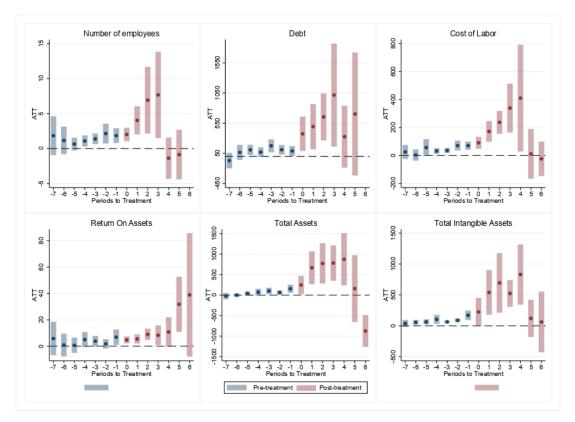



Figure 6: Evolution of numbers of SME enterprises

Results are aligned with expectations. The Start Up Act spurs innovation through high generation of intangible assets. Before the implementation of the policy, startups and small-medium sized companies struggle to finance their activity through debt while registering to the Start Up Act increases total debt of the business within 4 years. Similar considerations can be done with total assets and total intangible assets. Overall, the Start Up Act has several positive effects as the post-average treatment effect is significantly higher than the pre-average for each of the 11 dependent variables.

A drawback of the policy is that the majority of the variables of interest displays decreasing trend after Year 4, namely after 5 years of participating to the policy. We tried to give an interpretation to this result in the following way. Startups enjoy the advantages of the Start Up Act for a maximum of 5 years after which they can decide to become innovative small and medium-sized enterprises. It simply may be that they decide to exit from the policy without transforming the company. An interesting insight lies on the analysis of the variance which seems to generally increase in the last years. This capture a very common feature of startups and SMEs, namely the "explode or die" phenomenon. Enterprises that enter the policy with a high degree of potential experience an accelerated growth during the treatment period and they are able to sustain the same trend after the end of the advantages. In contrast, the other firms reach positive achievements when receiving incentives from the government but are not be able to uphold the growth further after leaving the policy. These enterprises either close down or incur in financial distress dragging the overall average down.

# 5 Limitations

The evaluation presents several complexity problems. Limited data may jeopardize our analysis as not all the dependent variables are available to open access and the free ones contain a significant percentage of missing values.

The assumptions we made on how to built the first control group, explained in deep in paragraph 3.1, create a set of enterprises significantly different from the treatment group, as shown in Figure 1. To overcome this issue we perform a Difference-in-Differences analysis using not-yet innovative firms as control group as summarized in Section 4.4.

We perform fixed effect estimations to account for unobservable across treated and untreated firms. We add year dummy variable since, being the policy still active today, SMEs and Startups enter and exit the policy in different years. The treatment group gathers firms that enter the policy in periods characterized by different macroeconomic scenarios and financial markets. The different years of entrance and exit result into an unbalanced panel data.

The enforcement of the policy is on a voluntary basis, namely not all the firms that meet the requirements enter the policy. This leads to a self selection problem. Our analysis also suffers from a reverse causality issue since an innovation shock may contemporaneously induce a firm to take part of the policy and change its growth trajectory. Even though we are aware of these two problems, we are not able to account for their effects.

It is important to be aware of the fact that many other policies have been introduced meanwhile or a few years after the implementation of the Start-up Act. Some of them have the aim of supporting startups and innovative entrepreneurship while others, such as the ones contained in the Salva Italia package, may have affected the overall macroeconomic and social scenario. The presence of multiple policies lead to difficulties in disentangling the actual effect of the Start Up Act. Here there are some examples of the main relevant policies in support of innovative entrepreneurships:

• Smart&Smart Italia represented one of the main financing programs for startups, offering subsidized loans with the aim of covering investment plans and managing costs worth at least EUR 100,000 up to a maximum of EUR 1,5 million.

- Italia Startup Visa and Italia Startup Hub allowed having a new simplified and faster procedure for granting entry visas and self-employment for non EU citizens who wanted to move to Italy and built an innovative startup with a financial availability not lower than EUR 50,000.
- Investor Visa for Italy Promotion of entrepreneurial culture in universities: CLabs. This last term referred to a new teaching method that allows students to be more open to collaboration, develop cross-countries competencies and share their own knowledge with the goal of diversifying their skills.
- Research and Development tax credit has the aim of providing tax incentives available to all companies that experienced an increase in R&D expenses between 2015 and 2020.
- Hyper-depreciation for the purchase of machinery and "industry 4.0". The ordinary depreciation deduction has consistently increased for investment in 4.0 machinery and technology. leading to a large multiannual tax relief. Therefore, from 2019 the rate of incentives is subject to a four-bracket system which is higher for investments under €2.5 million and progressively decreases up to €20 million.
- Patent Box introduced a facilitation system for income delivery to intellectual property, allowing for a 50% tax break on IP-related income which includes for instance patents, copyrighted software, know-how, and industrial models.
- "Startup sponsor": transfer of losses of new companies to listed companies From 2019:
- A new "National Innovation Fund" which is a public venture capital fund with the aim of assisting and helping innovative companies and the national VC market.
- Voucher for "innovation manager" which consists in a non-repayable grant that SMEs can apply for the purchase of specialist consultancy services with the intention of sustaining their digital transformation, for example, through the acquisition of "4.0" technologies.
- Strategies for emerging technologies: artificial intelligence and blockchain. It refers to a various number of initiatives launched by MISE which set up a fund for emerging technologies with the purpose of sustaining artificial intelligence development.

Finally, being the Start Up Act a recent decree law still active today, the time-span of analysis is relatively short [5]. It is possible to analyse the small-medium term effects but not the long ones.

# 6 Conclusion

The paper aims at evaluating the impact of the Start Up Act through a counterfactual analysis of firms that apply to the policy with respect to those that do not. The first approach is to consider firms that registered to the policy exactly in 2017. We then restore the original panel data and account for different treatment periods through the introduction of a set of control variables. After performing some descriptive analysis we find that enterprises that participate to the Start Up Act are significantly different from those that do not. In light of this finding, we change the definition of the control group, using as comparison the not-yet treated firms. Finally, we perform event studies to analyze the evolution of some balance sheet variables before and after the registration.

The Start Up Act in Lombardy has an overall positive effect, especially in increasing the value of intangible assets, raising investment towards research and publishing and financing their

activity through debt. The research highlights a debatable effect after five years from the implementation of the policy. Some of the dependent variables displays decreasing trends, posing some doubts on the effectiveness of the Start Up Act. The continuous monitoring activity of the program on the portal "Registro Imprese" makes it possible to conduct further and deeper analysis.

On 22 November 2022, InnovUp organized a conference for the 10th-year anniversary of the Start Up Act, during which economic and policy experts summed up the achievements and drawbacks of the policy. They highlighted that fundings granted to innovative enterprises are increasing as well as the fact that it is essential to enhance them further in order to keep up with other European countries. It is very important to improve policies similar to the Start Up Act that aims at creating a favourable environment for innovative enterprises, especially in today-socioeconomic environment. With the words of Luciano Floridi, who intervened during the conference, "digital transition is not only the icing on the cake, but the cake itself", meaning it is of pivotal importance[11].

# References

- [1] Sole 24 Ore. Come è cambiato il lavoro dopo la grande crisi e che cosa fare per trovarlo ora, 2018. URL https://www.ilsole24ore.com/art/ come-e-cambiato-lavoro-la-grande-crisi-e-che-cosa-fare-trovarlo-ora-AEKsCjdD.
- [2] Eveline Rodrigues. Startups acts: An emerging instrument to foster the development of innovative high-growth firms, 2021.
- [3] Istat. Censimento permanente delle imprese 2019: i primi risultati, 2020.
- [4] Silvia Magri Paolo Russo and Cristina Rampazzi. Innovative start-ups in italy: their special features and the effects of the 2012 law, 2016.
- [5] Technology OECD Science and Industry Policy Papers. The evaluation of the italian startup act, 2018.
- [6] Giancarlo Giudici Emanuele Giraudo and Luca Grilli. Enterpreneurship policy and the financing of young innovatice companies: evidence from the italian startup act, 2019.
- [7] Dirk Cxarnitzki Francesco Biancalani and Massimo Riccaboni. Intangible capital as a core value for startups, 2021.
- [8] Italian Ministry of Economic Development. The italian startup act: Italy's policy framework to support innovative startups, 2019.
- [9] President & CEO of Metroconsult Felice Fulvio Faraci. The italian start up act: a microeconomic program evaluation, 2020.
- [10] Brantly Callaway Ferndando Rios-Avila and Pedro H.C. Sant'Anna. Difference-in-difference with multiple time periods in stata, 2021.
- [11] InnovUp. 10 anni di start up act, 2022. URL https://www.innovup.net/ 10-anni-di-startup-act/.

# 7 Tables and graphs

| Variable<br>name | Storage<br>type | Display<br>format | Value<br>label | Variable label                                  |
|------------------|-----------------|-------------------|----------------|-------------------------------------------------|
| id               | float           | %9.0g             |                | Identification code (number)                    |
| codice_fiscale   | str11           | %11s              |                | Fiscal code (number)                            |
| ateco            | byte            | %10.0g            |                | Ateco code 2007 (number)                        |
| EverTreated      | byte            | %10.0g            |                | Dummy variable (dummy)                          |
| anno_ap          | int             | %10.0g            |                | Opening year (year)                             |
| anno_ch          | int             | %10.0g            |                | Closing year (year)                             |
| age              | byte            | %10.0g            |                | Age (number)                                    |
| anno_relativo    | byte            | %10.0g            |                | Realtive year (number)                          |
| Post             | byte            | %10.0g            |                | Dummy variable (dummy)                          |
| dip              | int             | %10.0g            |                | Number of employees (number)                    |
| ebitda           | double          | %10.0g            |                | Ebitda (kEuros)                                 |
| renddip          | double          | %10.0g            |                | Labor productivity (number)                     |
| totass           | double          | %10.0g            |                | Total assets (kEuros)                           |
| totintang        | double          | %10.0g            |                | Total intangibles assets (kEuros)               |
| debt             | double          | %10.0g            |                | Total debt (kEuros)                             |
| income           | double          | %10.0g            |                | Cost of labor (kEuros)                          |
| rda              | double          | %10.0g            |                | Return on Assets (%)                            |
| d_e              | double          | %10.0g            |                | Debt to equity ratio (%)                        |
| db_fatt          | double          | %10.0g            |                | Debts v. banks on total revenues (%)            |
| ric              | double          | %10.0g            |                | Total costs of research and publishing (kEuros) |
| Year             | float           | %9.0g             |                | Year (year)                                     |
| Group            | float           | %9.0g             |                | Year of innovation (year)                       |
|                  |                 |                   |                |                                                 |

Figure 7: Description of the variables contained in the panel data

```
Test of H0: Difference in coefficients not systematic
```

Figure 8: Hausman Test for number of employees Note: Similar results for the other dependent variables

| /ARIABLES (log)  | Labor<br>Productivity  | Number of<br>employees | Ebitda                | Total Assets          | Total<br>Intangible<br>Assets | Debt                  | Cost of labor         | Return on<br>Assets    | Debt to<br>Equity ratio | Debt v.<br>banks on<br>Total<br>Revenues | Research<br>and<br>publishing |
|------------------|------------------------|------------------------|-----------------------|-----------------------|-------------------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------------------------|-------------------------------|
| <b>Freat</b>     | -0.0253                | 0.5434***              | 0.4900**              | 0.9138***             | 1.3752***                     | 0.8077***             | 0.9164***             | -0.1174                | -0.1420                 | -0.5302                                  | 0.7095**                      |
|                  | (0.1513)               | (0.0953)               | (0.2031)              | (0.1430)              | (0.1552)                      | (0.1257)              | (0.1405)              | (0.2704)               | (0.3100)                | (0.3849)                                 | (0.3583)                      |
| After            | -0.4517***             | 0.1186                 | 0.5372***             | 0.4318***             | -0.4664***                    | 0.7284***             | 1.2195***             | -0.2906***             | -0.3126***              | 1.0255***                                | -0.7699*                      |
|                  | (0.1177)               | (0.1211)               | (0.1486)              | (0.1303)              | (0.1786)                      | (0.1153)              | (0.0403)              | (0.0394)               | (0.0905)                | (0.0989)                                 | (0.4508)                      |
| 2009             | -0.2759**              | -0.1514                | -0.2989**             | -0.2072               | -0.4748***                    | -0.3067***            | -0.0574*              | -0.0031                | -0.0268                 | 0.0492                                   | -0.2126*                      |
|                  | (0.1198)               | (0.1097)               | (0.1517)              | (0.1326)              | (0.1777)                      | (0.1189)              | (0.0312)              | (0.0235)               | (0.0459)                | (0.0524)                                 | (0.1254)                      |
| 2010             | -0.3313***             | 0.0018                 | -0.2634*              | -0.2745**             | -0.5047***                    | -0.2789**             | 0.0050                | -0.0283                | -0.0330                 | 0.1482**                                 | -0.3832*                      |
|                  | (0.1202)               | (0.1229)               | (0.1525)              | (0.1326)              | (0.1785)                      | (0.1187)              | (0.0344)              | (0.0261)               | (0.0537)                | (0.0604)                                 | (0.1970)                      |
| 2011             | -0.2958**              | -0.1227                | -0.1307               | -0.2558*              | -0.5167***                    | -0.1560               | 0.0693*               | -0.0559**              | -0.0252                 | 0.3290***                                | -0.3756                       |
|                  | (0.1199)               | (0.1235)               | (0.1518)              | (0.1324)              | (0.1788)                      | (0.1184)              | (0.0358)              | (0.0279)               | (0.0596)                | (0.0668)                                 | (0.2312)                      |
| 2012             | -0.3124***             | -0.2881**              | -0.0572               | -0.3002**             | -0.5464***                    | -0.1099               | 0.0776**              | -0.0809***             | -0.0587                 | 0.3770***                                | -0.3840                       |
|                  | (0.1196)               | (0.1233)               | (0.1513)              | (0.1321)              | (0.1786)                      | (0.1179)              | (0.0371)              | (0.0296)               | (0.0650)                | (0.0721)                                 | (0.2794)                      |
| 2013             | -0.3586***             | -0.3344***             | -0.1253               | -0.3533***            | -0.5708***                    | -0.0845               | 0.0702*               | -0.0982***             | -0.0671                 | 0.4552***                                | -0.5659*                      |
| 014              | (0.1194)               | (0.1231)               | (0.1509)              | (0.1318)              | (0.1785)                      | (0.1176)              | (0.0379)              | (0.0309)               | (0.0696)                | (0.0768)                                 | (0.3206)                      |
| 014              | -0.3761***             | -0.3162***             | -0.1010               | -0.3284**             | -0.5993***                    | -0.0289               | 0.1422***             | -0.1250***             | -0.1102                 | 0.5165***                                | -0.5827*                      |
| 015              | (0.1190)               | (0.1228)               | (0.1503)              | (0.1314)              | (0.1783)                      | (0.1171)              | (0.0384)              | (0.0321)               | (0.0728)<br>0.1524**    | (0.0801)                                 | (0.3438)                      |
| 015              | -0.3638***<br>(0.1187) | -0.2801**<br>(0.1224)  | -0.0150<br>(0.1498)   | -0.2792**<br>(0.1310) | -0.6207***<br>(0.1781)        | 0.0482 (0.1166)       | 0.2340***<br>(0.0388) | -0.1500***<br>(0.0333) | -0.1524**<br>(0.0758)   | 0.5520***<br>(0.0833)                    | -0.6883*<br>(0.3627)          |
| 016              | -0.3447***             | -0.1976                | 0.0890                | -0.1955               | -0.6176***                    | 0.1368                | 0.4855***             | -0.1832***             | -0.1943**               | 0.5798***                                | -0.7468*                      |
| 016              | (0.1184)               | (0.1222)               | (0.1494)              | (0.1308)              | (0.1781)                      | (0.1162)              | (0.0391)              | (0.0344)               | (0.0789)                | (0.0866)                                 | (0.3824)                      |
| 017              | 0.0618***              | -0.2563***             | -0.3721***            | -0.5293***            | -0.1594***                    | -0.4873***            | -0.5637***            | 0.0839***              | 0.0611***               | -0.4259***                               | -0.0601                       |
| 017              | (0.0115)               | (0.0090)               | (0.0163)              | (0.0157)              | (0.0190)                      | (0.0138)              | (0.0075)              | (0.0106)               | (0.0233)                | (0.0256)                                 | (0.1078)                      |
| 018              | 0.0511***              | -0.1904***             | -0.2565***            | -0.3994***            | -0.1281***                    | -0.3655***            | -0.3966***            | 0.0532***              | 0.0048                  | -0.3676***                               | -0.0809                       |
| 010              | (0.0089)               | (0.0070)               | (0.0127)              | (0.0122)              | (0.0148)                      | (0.0106)              | (0.0063)              | (0.0090)               | (0.0196)                | (0.0213)                                 | (0.0836)                      |
| 019              | 0.0310***              | -0.1237***             | -0.1294***            | -0.2680***            | -0.0935***                    | -0.2524***            | -0.2274***            | 0.0072                 | -0.0265                 | -0.3392***                               | -0.0286                       |
|                  | (0.0065)               | (0.0050)               | (0.0093)              | (0.0088)              | (0.0107)                      | (0.0076)              | (0.0054)              | (0.0080)               | (0.0166)                | (0.0181)                                 | (0.0642)                      |
| 020              | -0.0121***             | -0.0477***             | -0.0455***            | -0.1456***            | -0.0626***                    | -0.1403***            | -0.2947***            | -0.0354***             | 0.0234*                 | -0.0869***                               | -0.0003                       |
|                  | (0.0042)               | (0.0031)               | (0.0065)              | (0.0054)              | (0.0069)                      | (0.0046)              | (0.0044)              | (0.0073)               | (0.0128)                | (0.0141)                                 | (0.0476)                      |
| 021              |                        | -                      | -                     | -                     | -                             | -                     | -                     | - 1                    | -                       | -                                        | -                             |
| -year            | 0.0425                 | 0.0370                 | -0.2466***            | 0.0693*               | 0.2195***                     | -0.1350***            | 0.9152***             | -0.0040                | -0.0134                 | 0.0027                                   | -0.0350                       |
|                  | (0.0306)               | (0.0237)               | (0.0426)              | (0.0399)              | (0.0436)                      | (0.0370)              | (0.0079)              | (0.0065)               | (0.0126)                | (0.0146)                                 | (0.0484)                      |
| -year            | 0.0600**               | 0.1562***              | 0.3771***             | 0.5304***             | 0.3521***                     | 0.5640***             | 1.0137***             | -0.0078                | -0.0114                 | 0.0117                                   | -0.1211                       |
|                  | (0.0283)               | (0.0221)               | (0.0394)              | (0.0369)              | (0.0406)                      | (0.0342)              | (0.0086)              | (0.0081)               | (0.0174)                | (0.0196)                                 | (0.0790)                      |
| -year            | 0.0566**               | 0.2077***              | 0.5192***             | 0.6593***             | 0.3020***                     | 0.7265***             | 0.9981***             | -0.0020                | -0.0231                 | -0.0108                                  | -0.1450                       |
|                  | (0.0259)               | (0.0203)               | (0.0362)              | (0.0340)              | (0.0377)                      | (0.0313)              | (0.0089)              | (0.0096)               | (0.0216)                | (0.0239)                                 | (0.1029)                      |
| -year            | 0.0470**               | 0.2131***              | 0.5493***             | 0.6529***             | 0.1299***                     | 0.7687***             | 0.9326***             | -0.0110                | -0.0208                 | 0.0313                                   | -0.1713                       |
|                  | (0.0236)               | (0.0186)               | (0.0330)              | (0.0312)              | (0.0350)                      | (0.0285)              | (0.0095)              | (0.0114)               | (0.0261)                | (0.0286)                                 | (0.1271)                      |
| -year            | 0.0343                 | 0.2088***              | 0.5435***             | 0.6230***             | 0.1039***                     | 0.7547***             | 0.8587***             | -0.0058                | 0.0015                  | 0.0349                                   | -0.1625                       |
|                  | (0.0213)               | (0.0169)               | (0.0299)              | (0.0286)              | (0.0329)                      | (0.0258)              | (0.0101)              | (0.0133)               | (0.0306)                | (0.0334)                                 | (0.1470)                      |
| -year            | 0.0235                 | 0.1957***              | 0.4904***             | 0.5741***             | 0.1769***                     | 0.7091***             | 0.7598***             | -0.0127                | -0.0151                 | 0.0426                                   | -0.1266                       |
|                  | (0.0192)               | (0.0153)               | (0.0271)              | (0.0263)              | (0.0313)                      | (0.0232)              | (0.0108)              | (0.0152)               | (0.0352)                | (0.0382)                                 | (0.1714)                      |
| -year            | 0.0159                 | 0.1767***              | 0.4262***             | 0.5105***             | 0.2096***                     | 0.6425***             | 0.6644***             | -0.0021                | -0.0151                 | 0.0756*                                  | -0.0502                       |
|                  | (0.0172)               | (0.0139)               | (0.0245)              | (0.0242)              | (0.0302)                      | (0.0208)              | (0.0117)              | (0.0171)               | (0.0394)                | (0.0428)                                 | (0.1906)                      |
| -year            | 0.0096                 | 0.1499***              | 0.3779***             | 0.4287***             | 0.2080***                     | 0.5564***             | 0.5485***             | 0.0104                 | -0.0133                 | 0.0463                                   | -0.0018                       |
|                  | (0.0154)               | (0.0126)               | (0.0223)              | (0.0224)              | (0.0294)                      | (0.0186)              | (0.0126)              | (0.0190)               | (0.0433)                | (0.0471)                                 | (0.2095)                      |
| -year            | 0.0118                 | 0.1322***              | 0.3000***             | 0.3500***             | 0.1650***                     | 0.4606***             | 0.4436***             | 0.0184                 | -0.0333                 | 0.0520                                   | -0.0820                       |
| 0 voor           | (0.0138)               | (0.0115)               | (0.0205)              | (0.0212)              | (0.0293)                      | (0.0167)              | (0.0135)              | (0.0207)               | (0.0469)                | (0.0508)                                 | (0.2284)                      |
| 0-year           | -0.0004                | 0.0999***              | 0.2241***             | 0.2606***             | 0.1271***                     | 0.3531***             | 0.3421***             | 0.0179                 | -0.0563                 | 0.0157                                   | -0.0709                       |
| 1 year           | (0.0126)               | (0.0106)               | (0.0192)              | (0.0201)              | (0.0294)                      | (0.0150)              | (0.0143)              | (0.0223)               | (0.0502)                | (0.0544)                                 | (0.2325)                      |
| 1-year           | 0.0053                 | 0.0689***              | 0.1484***             | 0.1772***             | 0.1174***                     | 0.2416***             | 0.2255***             | 0.0125                 | -0.0728                 | 0.0333                                   | -0.1277                       |
| 2-year           | (0.0116)               | (0.0099)<br>0.0289***  | (0.0185)<br>0.0892*** | (0.0191)<br>0.0700*** | (0.0288)<br>0.0566**          | (0.0136)<br>0.1272*** | (0.0150)<br>0.1249*** | (0.0239)<br>0.0096     | (0.0513)<br>-0.0486     | (0.0564)<br>0.0643                       | (0.2201)                      |
| 2-year           | 0.0114                 | (0.0086)               |                       |                       |                               |                       |                       |                        |                         |                                          | -0.1103                       |
| 3-year           | (0.0107)               | - (0.0086)             | (0.0185)              | (0.0175)              | (0.0267)                      | (0.0119)<br>-         | (0.0143)              | (0.0254)<br>-          | (0.0468)                | (0.0523)                                 | (0.1877)                      |
| onstant          | 2.0402***              | 1.3398***              | 2.7264***             | 3.0656***             | 2.0874***                     | 4.2370***             | 2.7552***             | 1.9933***              | 0.2023***               | 1.1059***                                | 3.7182***                     |
|                  | (0.1174)               | (0.1202)               | (0.1479)              | (0.1290)              | (0.1761)                      | (0.1148)              | (0.0360)              | (0.0292)               | (0.0657)                | (0.0727)                                 | (0.3119)                      |
| )<br>bservations | 368,227                | 369,746                | 495,580               | 673,156               | 539,291                       | 712,515               | 431,858               | 385,520                | 154,185                 | 142,998                                  | 8,349                         |
| -squared         | 0.0073                 | 0.0798                 | 0.0956                | 0.0637                | 0.0082                        | 0.1394                | 0.1736                | 0.0034                 | 0.0040                  | 0.0170                                   | 0.0160                        |
| 25               | 86,741                 | 86,581                 | 118,918               | 140,320               | 129,268                       | 143,918               | 94,102                | 120,109                | 57,592                  | 54,537                                   | 3,988                         |

Robust standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Figure 9: Fixed effect estimation using as baseline 2017

| VARIABLES (log) | Labor<br>Productivity | Number of<br>employees | Ebitda                 | Total Assets           | Total<br>Intangible<br>Assets | Debt                   | Cost of labor          | Return on<br>Assets   | Debt to<br>Equity ratio | Debt v.<br>banks on<br>Total<br>Revenues | Research<br>and<br>publishing |
|-----------------|-----------------------|------------------------|------------------------|------------------------|-------------------------------|------------------------|------------------------|-----------------------|-------------------------|------------------------------------------|-------------------------------|
| Treat           | 0.2401                | 0.4706***              | 0.4557                 | 0.7140***              | 1.0045***                     | 0.5971***              | 0.6973***              | -0.2969               | -0.3055                 | -1.2158*                                 | 1.6147***                     |
|                 | (0.2525)              | (0.1631)               | (0.3236)               | (0.2235)               | (0.2199)                      | (0.1749)               | (0.2289)               | (0.6071)              | (0.4360)                | (0.6662)                                 | (0.4920)                      |
| After           | -0.0553               | 0.5041***              | 0.7012***              | 0.9066***              | 0.6880***                     | 0.8821***              | 1.7879***              | -0.2440               | -0.6460                 | 0.3262                                   | -2.4882***                    |
|                 | (0.0601)              | (0.0389)               | (0.0845)               | (0.0683)               | (0.0947)                      | (0.0547)               | (0.1883)               | (0.1890)              | (0.4869)                | (0.4988)                                 | (0.8504)                      |
| 2009            | 0.3321**              | -0.0213                | -0.3147*               | -0.6196***             | -0.4080**                     | -0.6415***             | 0.3177**               | -0.0457               | 0.3340                  | 0.2009                                   | -0.5611***                    |
|                 | (0.1598)              | (0.1473)               | (0.1911)               | (0.1636)               | (0.1832)                      | (0.1448)               | (0.1608)               | (0.1150)              | (0.2315)                | (0.2496)                                 | (0.1695)                      |
| 2010            | 0.1315                | 0.0045                 | -0.3893***             | -0.6403***             | -0.4667***                    | -0.6080***             | 0.3073*                | -0.1772               | -0.0766                 | -0.1927                                  | -1.3225***                    |
|                 | (0.0987)              | (0.1384)               | (0.1368)               | (0.1242)               | (0.1535)                      | (0.1036)               | (0.1678)               | (0.1170)              | (0.2912)                | (0.3125)                                 | (0.1932)                      |
| 2011            | 0.0459                | -0.1049                | -0.4082***             | -0.4827***             | -0.4125***                    | -0.6321***             | 0.3797**               | -0.2100*              | -0.1013                 | 0.1094                                   | -1.6207***                    |
| 20000           | (0.0786)              | (0.1034)               | (0.1095)               | (0.1007)               | (0.1257)                      | (0.0838)               | (0.1698)               | (0.1221)              | (0.3205)                | (0.3172)                                 | (0.3074)                      |
| 2012            | 0.0328                | -0.2138***             | -0.3025***             | -0.3924***             | -0.3710***                    | -0.5284***             | 0.3696**               | -0.2152               | -0.0395                 | 0.1411                                   | -1.8769***                    |
|                 | (0.0621)              | (0.0439)               | (0.0830)               | (0.0786)               | (0.0997)                      | (0.0643)               | (0.1765)               | (0.1339)              | (0.3502)                | (0.3325)                                 | (0.5587)                      |
| 2013            | 0.0354                | -0.2740***             | -0.2852***             | -0.3419***             | -0.2292***                    | -0.4203***             | 0.4680***              | -0.1568               | -0.0693                 | 0.2515                                   | -2.1003***                    |
|                 | (0.0444)              | (0.0330)               | (0.0611)               | (0.0560)               | (0.0727)                      | (0.0445)               | (0.1778)               | (0.1382)              | (0.3634)                | (0.3523)                                 | (0.7022)                      |
| 2014            | -0.0243               | -0.2112***             | -0.2129***             | -0.2420***             | -0.1630***                    | -0.3055***             | 0.5436***              | -0.1702               | -0.2180                 | 0.1995                                   | -1.9178**                     |
| 2015            | (0.0342)              | (0.0250)               | (0.0437)               | (0.0408)               | (0.0524)                      | (0.0332)               | (0.1794)               | (0.1449)              | (0.3814)                | (0.3700)                                 | (0.7713)                      |
| 2015            | 0.0219                | -0.1392***             | -0.0868***             | -0.1417***             | -0.1003***                    | -0.1408***             | 0.6366***              | -0.2084               | -0.3611                 | 0.2481                                   | -1.8555**                     |
| 2016            | (0.0246)              | (0.0152)               | (0.0296)               | (0.0254)               | (0.0316)                      | (0.0224)               | (0.1806)               | (0.1513)              | (0.3919)                | (0.3909)                                 | (0.8320)                      |
| 2016            | 2070                  | 1                      | 27                     |                        | 20                            | 2                      | 0.9331***              | -0.1578               | -0.4858                 | 0.0703                                   | -1.7541*                      |
| 2017            | 0.0222                | -0.4190***             | -0.6263***             | -0.7652***             | -0.5874***                    | 0 7101***              | (0.1823)<br>-0.6981*** | (0.1577)              | (0.4089)                | (0.4100)                                 | (0.8918)                      |
| 2017            | -0.0232               | (0.0319)               | (0.0692)               | -0.7652+++ (0.0555)    |                               | -0.7101***             |                        | 0.0001                | 0.2002                  | -0.2180<br>(0.1337)                      | 0.2197                        |
| 0019            | (0.0495)              |                        | -0.4290***             |                        | (0.0768)                      | (0.0443)               | (0.0332)               | (0.0520)              | (0.1237)                |                                          | (0.3285)                      |
| 2018            | -0.0288               | -0.3421***             |                        | -0.5941***<br>(0.0444) | -0.4722***                    | -0.5274***             | -0.5516***             | -0.0159               | 0.0572 (0.0998)         | -0.1833*<br>(0.1071)                     | -0.0123                       |
| 2010            | (0.0396)              | (0.0257)<br>-0.2469*** | (0.0543)<br>-0.2467*** | -0.4148***             | (0.0616)<br>-0.3387***        | (0.0353)<br>-0.3426*** | (0.0281)<br>-0.3732*** | (0.0433)              |                         |                                          | (0.3755)                      |
| 2019            | 0.0087                |                        |                        |                        |                               |                        |                        | -0.0063               | -0.0389<br>(0.0777)     | -0.2676***                               | 0.1412 (0.3850)               |
| 2020            | (0.0287)<br>-0.0216   | (0.0185)<br>-0.1303*** | (0.0395)<br>-0.1343*** | (0.0333)<br>-0.2044*** | (0.0461)<br>-0.1941***        | (0.0262)<br>-0.1969*** | (0.0241)<br>-0.2607*** | (0.0363)<br>-0.0653** | 0.0025                  | (0.0869)<br>-0.0438                      | 0.3755                        |
| 2020            | (0.0195)              | (0.0117)               | (0.0271)               | (0.0226)               | (0.0305)                      | (0.0173)               | (0.0192)               | (0.0320)              | (0.0591)                | (0.0438                                  | (0.4116)                      |
| 2021            | -                     | -                      | -                      | -                      | -                             | -                      | -                      | -                     | -                       | -                                        | -                             |
| 1-year          | 0.2614**              | 0.2005***              | 0.2254                 | 0.5839***              | 0.8256***                     | 0.2727**               | 0.8191***              | 0.0161                | 0.0159                  | 0.0983                                   | 0.1293                        |
|                 | (0.1322)              | (0.0762)               | (0.1807)               | (0.1155)               | (0.1294)                      | (0.1109)               | (0.0361)               | (0.0283)              | (0.0563)                | (0.0664)                                 | (0.1526)                      |
| 2-year          | 0.2550**              | 0.3294***              | 0.6983***              | 0.9300***              | 0.9375***                     | 0.8420***              | 0.9609***              | 0.0048                | 0.0644                  | 0.1758*                                  | 0.2759                        |
|                 | (0.1217)              | (0.0719)               | (0.1671)               | (0.1076)               | (0.1225)                      | (0.1021)               | (0.0379)               | (0.0364)              | (0.0822)                | (0.0919)                                 | (0.2008)                      |
| 3-year          | 0.2012*               | 0.3824***              | 0.8032***              | 1.0314***              | 0.8627***                     | 0.9570***              | 0.9939***              | -0.0184               | 0.0963                  | 0.1719                                   | 0.0567                        |
|                 | (0.1115)              | (0.0665)               | (0.1532)               | (0.1008)               | (0.1179)                      | (0.0943)               | (0.0394)               | (0.0448)              | (0.1056)                | (0.1171)                                 | (0.2518)                      |
| 4-year          | 0.1936*               | 0.4014***              | 0.7982***              | 0.9617***              | 0.6315***                     | 0.9807***              | 1.0081***              | -0.0616               | 0.0883                  | 0.1872                                   | -0.3273                       |
|                 | (0.1019)              | (0.0616)               | (0.1398)               | (0.0954)               | (0.1156)                      | (0.0867)               | (0.0418)               | (0.0549)              | (0.1331)                | (0.1465)                                 | (0.5058)                      |
| 5-year          | 0.1465                | 0.3778***              | 0.7972***              | 0.8875***              | 0.5463***                     | 0.9264***              | 0.9405***              | -0.0277               | 0.0688                  | 0.2398                                   | -0.1986                       |
|                 | (0.0915)              | (0.0566)               | (0.1267)               | (0.0921)               | (0.1175)                      | (0.0799)               | (0.0450)               | (0.0640)              | (0.1572)                | (0.1728)                                 | (0.4399)                      |
| 5-year          | 0.1285                | 0.3740***              | 0.7441***              | 0.7866***              | 0.5675***                     | 0.8622***              | 0.8416***              | -0.0762               | 0.2247                  | 0.2577                                   | -0.4138                       |
|                 | (0.0820)              | (0.0527)               | (0.1151)               | (0.0906)               | (0.1228)                      | (0.0737)               | (0.0488)               | (0.0758)              | (0.1842)                | (0.2043)                                 | (0.5016)                      |
| 7-year          | 0.1066                | 0.3515***              | 0.6738***              | 0.6846***              | 0.5278***                     | 0.7894***              | 0.7702***              | -0.1125               | 0.3153                  | 0.5639**                                 | -0.2582                       |
|                 | (0.0728)              | (0.0492)               | (0.1040)               | (0.0908)               | (0.1298)                      | (0.0684)               | (0.0521)               | (0.0857)              | (0.2138)                | (0.2289)                                 | (0.4833)                      |
| 3-year          | 0.0998                | 0.2934***              | 0.5675***              | 0.6201***              | 0.4813***                     | 0.6957***              | 0.6463***              | -0.0846               | 0.3297                  | 0.6178**                                 | -0.3443                       |
|                 | (0.0637)              | (0.0459)               | (0.0951)               | (0.0915)               | (0.1391)                      | (0.0643)               | (0.0571)               | (0.0964)              | (0.2386)                | (0.2553)                                 | (0.4912)                      |
| 9-year          | 0.0702                | 0.2503***              | 0.4985***              | 0.5845***              | 0.4774***                     | 0.6101***              | 0.5055***              | -0.1126               | 0.3422                  | 0.5631**                                 | -0.9011                       |
|                 | (0.0557)              | (0.0438)               | (0.0877)               | (0.0935)               | (0.1462)                      | (0.0615)               | (0.0609)               | (0.1075)              | (0.2534)                | (0.2767)                                 | (0.6605)                      |
| LO-year         | 0.0660                | 0.1644***              | 0.3517***              | 0.3710***              | 0.3466**                      | 0.4582***              | 0.4134***              | -0.1313               | 0.4235                  | 0.4063                                   | -0.5166                       |
|                 | (0.0499)              | (0.0429)               | (0.0835)               | (0.0955)               | (0.1547)                      | (0.0601)               | (0.0631)               | (0.1167)              | (0.2842)                | (0.3117)                                 | (0.5477)                      |
| l1-year         | 0.0627                | 0.1051**               | 0.2137***              | 0.2415**               | 0.2591                        | 0.2938***              | 0.2913***              | -0.0487               | 0.5817*                 | 0.5821*                                  | -0.0490                       |
| -               | (0.0467)              | (0.0414)               | (0.0795)               | (0.0981)               | (0.1612)                      | (0.0569)               | (0.0647)               | (0.1257)              | (0.2975)                | (0.3162)                                 | (0.4014)                      |
| 2-year          | 0.0777*               | 0.0497                 | 0.0739                 | 0.1012                 | 0.1244                        | 0.1423***              | 0.2087***              | -0.0555               | 0.3914                  | 0.3056                                   | 0.0613                        |
| 13-year         | (0.0417)              | (0.0388)               | (0.0786)               | (0.0922)               | (0.1445)                      | (0.0522)               | (0.0624)               | (0.1269)              | (0.2837)                | (0.3208)                                 | (0.4112)                      |
| Constant        | 1.1123***             | 0.7278***              | 2.1483***              | 1.7273***              | 0.9464***                     | 3.2312***              | 2.2636***              | 2.0802***             | 0.2753                  | 1.4082***                                | 5.1767***                     |
| onstallt        | (0.1045)              | (0.0627)               | (0.1447)               | (0.0980)               | (0.1164)                      | (0.0905)               | (0.1711)               | (0.1343)              | (0.3508)                | (0.3433)                                 | (0.6900)                      |
| Observations    | 20,141                | 20,218                 | 27,103                 | 34,767                 | 28,350                        | 36,826                 | 23,163                 | 19,815                | 8,022                   | 7,536                                    | 494                           |
|                 |                       |                        |                        | 0.0833                 | 0.0211                        |                        | 0.2058                 |                       | 0.0088                  |                                          |                               |
| R-squared       | 0.0168                | 0.1582                 | 0.1014                 | 0.0055                 | 0.0211                        | 0.1885                 | 0.2038                 | 0.0052                | 0.0000                  | 0.0209                                   | 0.1467                        |

Robust standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Figure 10: Fixed effect estimation using as baseline 2017 considering Ateco sectors 62,63 and 72

| /ARIABLES (log) | Labor<br>Productivity  | Number of employees   | Ebitda                | Total Assets          | Total<br>Intangible<br>Assets | Debt                   | Cost of labor          | Return on<br>Assets    | Debt to<br>Equity ratio | Debt v.<br>banks on<br>Total<br>Revenues | Research<br>and<br>publishing |
|-----------------|------------------------|-----------------------|-----------------------|-----------------------|-------------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------------------------|-------------------------------|
| reat            | 0.0149                 | 0.0480                | -0.0236               | 0.2737***             | 0.2841***                     | 0.2158***              | 0.1172*                | -0.1527*               | 0.2645**                | -0.2191                                  | 0.0545                        |
|                 | (0.0559)               | (0.0370)              | (0.0779)              | (0.0611)              | (0.0705)                      | (0.0541)               | (0.0605)               | (0.0812)               | (0.1259)                | (0.1417)                                 | (0.1599)                      |
| -year           | -0.0684<br>(0.1235)    | -0.0655               | -0.1926               | -0.2184**<br>(0.0887) | -0.1549*                      | -0.1832**              | 0.9968***<br>(0.0232)  | -0.0171                | -0.0061                 | 0.1166**                                 | -0.1703                       |
| -year           | -0.0558                | (0.0771)<br>0.1029    | (0.1290)<br>0.4698*** | 0.3523***             | (0.0894)<br>-0.0399           | (0.0909)<br>0.6017***  | (0.0232)<br>1.2103***  | (0.0203)<br>-0.0312    | (0.0441)<br>-0.0255     | (0.0493)<br>0.2208***                    | (0.1460)<br>-0.3728           |
| , year          | (0.1069)               | (0.0695)              | (0.1130)              | (0.0819)              | (0.0849)                      | (0.0824)               | (0.0313)               | (0.0325)               | (0.0696)                | (0.0775)                                 | (0.2307)                      |
| l-year          | -0.0793                | 0.1692***             | 0.6576***             | 0.5723***             | -0.1020                       | 0.8190***              | 1.2895***              | -0.0516                | -0.0811                 | 0.2360***                                | -0.4857*                      |
|                 | (0.0913)               | (0.0634)              | (0.0988)              | (0.0763)              | (0.0841)                      | (0.0747)               | (0.0323)               | (0.0369)               | (0.0747)                | (0.0830)                                 | (0.2729)                      |
| -year           | -0.1307*               | 0.1932***             | 0.7225***             | 0.6464***             | -0.2918***                    | 0.9297***              | 1.2965***              | -0.1092***             | -0.1623**               | 0.3118***                                | -0.6017**                     |
|                 | (0.0793)               | (0.0607)              | (0.0882)              | (0.0737)              | (0.0882)                      | (0.0701)               | (0.0292)               | (0.0356)               | (0.0684)                | (0.0763)                                 | (0.2437)                      |
| -year           | -0.1745**              | 0.2134***             | 0.7672***             | 0.7240***             | -0.2613***                    | 0.9974***              | 1.3136***              | -0.1478***             | -0.1347**               | 0.4094***                                | -0.6147***                    |
| woor            | (0.0742)<br>-0.2051*** | (0.0630)<br>0.2228*** | (0.0847)<br>0.7294*** | (0.0766)<br>0.7944*** | (0.0975)<br>-0.0466           | (0.0707)<br>1.0254***  | (0.0261)<br>1.3141***  | (0.0303)<br>-0.1562*** | (0.0604)<br>-0.1520***  | (0.0673)<br>0.4939***                    | (0.2349)<br>-0.4837**         |
| -year           | (0.0776)               | (0.0700)              | (0.0895)              | (0.0843)              | -0.0400                       | (0.0767)               | (0.0244)               | (0.0227)               | (0.0526)                | (0.0569)                                 | (0.2430)                      |
| '-year          | -0.3127**              | 0.0800                | 0.6297***             | 0.6746***             | -0.1973                       | 0.9629***              | 1.4358***              | -0.1400***             | -0.1694*                | 0.5992***                                | -0.7426**                     |
| ,               | (0.1218)               | (0.1073)              | (0.1560)              | (0.1593)              | (0.1771)                      | (0.1444)               | (0.0425)               | (0.0414)               | (0.0911)                | (0.1015)                                 | (0.3668)                      |
| l-year          | -0.1560                | 0.1168                | 0.7503***             | 0.8854***             | -0.2170                       | 1.1946***              | 1.4248***              | -0.1137**              | -0.1682*                | 0.7039***                                | -0.1076                       |
|                 | (0.1570)               | (0.1205)              | (0.1907)              | (0.1604)              | (0.1699)                      | (0.1540)               | (0.0456)               | (0.0472)               | (0.1022)                | (0.1138)                                 | (0.4040)                      |
| )-year          | -0.2061                | 0.0915                | 0.5248***             | 0.5057***             | -0.4559***                    | 0.9090***              | 1.2615***              | -0.1760***             | -0.3554***              | 0.6301***                                | -0.5616                       |
|                 | (0.1545)               | (0.1120)              | (0.1746)              | (0.1379)              | (0.1688)                      | (0.1289)               | (0.0517)               | (0.0524)               | (0.1162)                | (0.1278)                                 | (0.4600)                      |
| .0-year         | -0.4136***             | 0.0911                | 0.5834***             | 0.3590***             | -0.5903***                    | 0.8148***              | 1.2496***              | -0.1877***             | -0.3232***              | 0.7969***                                | -0.7192                       |
|                 | (0.1161)               | (0.1056)              | (0.1377)              | (0.1153)              | (0.1508)                      | (0.1047)               | (0.0422)               | (0.0449)               | (0.1022)                | (0.1117)                                 | (0.4420)                      |
| 1-year          | -0.3766***             | 0.1091                | 0.5519***             | 0.3842***             | -0.5740***                    | 0.8063***              | 1.2143***              | -0.2599***             | -0.3122***              | 0.9102***                                | -0.9039*                      |
| 2 voor          | (0.1114)               | (0.1093)              | (0.1362)              | (0.1174)              | (0.1578)                      | (0.1050)               | (0.0421)               | (0.0439)               | (0.1015)                | (0.1105)                                 | (0.4689)                      |
| 2-year          | -0.3869***             | 0.0639                | 0.5395***             | 0.3985***             | -0.5857***                    | 0.7584***<br>(0.1091)  | 1.2876***<br>(0.0441)  | -0.2239***             | -0.3456***              | 1.0524***                                | -0.9609*                      |
| 3-year          | (0.1123)<br>-0.4411*** | (0.1157)<br>0.0605    | (0.1402)<br>0.5129*** | (0.1232)<br>0.4705*** | (0.1681)<br>-0.5388***        | (0.1091)<br>0.7191***  | (0.0441)<br>1.2372***  | (0.0449)<br>-0.2887*** | (0.1076)<br>-0.3171***  | (0.1147)<br>1.0223***                    | (0.5185)<br>-0.7891           |
| J-year          | (0.1187)               | (0.1242)              | (0.1495)              | (0.1320)              | (0.1815)                      | (0.1165)               | (0.0470)               | (0.0476)               | (0.1161)                | (0.1246)                                 | (0.5855)                      |
| 009             | -0.1653                | -0.0840               | -0.3535*              | 0.0754                | -0.1035                       | -0.2647*               | -0.1381***             | 0.0044                 | -0.0474                 | -0.0678                                  | -0.0009                       |
|                 | (0.1634)               | (0.1247)              | (0.1863)              | (0.1465)              | (0.1820)                      | (0.1385)               | (0.0363)               | (0.0300)               | (0.0613)                | (0.0692)                                 | (0.1872)                      |
| 010             | -0.2230                | 0.1019                | -0.3426**             | -0.1012               | -0.1025                       | -0.3083**              | -0.2107***             | 0.0043                 | -0.0116                 | -0.0510                                  | -0.2463                       |
|                 | (0.1447)               | (0.1237)              | (0.1670)              | (0.1338)              | (0.1674)                      | (0.1255)               | (0.0431)               | (0.0406)               | (0.0847)                | (0.0948)                                 | (0.3020)                      |
| 011             | -0.1686                | 0.0037                | -0.2658*              | -0.1812               | -0.1070                       | -0.2402**              | -0.2236***             | -0.0245                | 0.0544                  | 0.0881                                   | -0.1570                       |
|                 | (0.1258)               | (0.1119)              | (0.1467)              | (0.1212)              | (0.1535)                      | (0.1123)               | (0.0434)               | (0.0448)               | (0.0899)                | (0.1012)                                 | (0.3190)                      |
| 012             | -0.1086                | -0.3322***            | -0.2239*              | -0.3103***            | -0.1374                       | -0.2673***             | -0.2743***             | 0.0510                 | 0.1131                  | 0.1232                                   | -0.1549                       |
|                 | (0.1079)               | (0.0976)              | (0.1275)              | (0.1088)              | (0.1401)                      | (0.0997)               | (0.0397)               | (0.0437)               | (0.0871)                | (0.0969)                                 | (0.3122)                      |
| 013             | -0.1299                | -0.3876***            | -0.3737***            | -0.4322***            | -0.1754                       | -0.3358***             | -0.3585***             | 0.0491                 | 0.0581                  | 0.0461                                   | -0.1450                       |
|                 | (0.0935)               | (0.0866)              | (0.1109)              | (0.0987)              | (0.1294)                      | (0.0897)               | (0.0333)               | (0.0375)               | (0.0752)                | (0.0850)                                 | (0.2983)                      |
| 014             | -0.1420*               | -0.3980***            | -0.3559***            | -0.5004***            | -0.3940***                    | -0.3524***             | -0.3727***             | 0.0069                 | 0.0156                  | 0.0162                                   | -0.2231                       |
| 015             | (0.0843)               | (0.0779)              | (0.0985)              | (0.0917)              | (0.1203)                      | (0.0831)               | (0.0272)               | (0.0251)               | (0.0583)                | (0.0631)                                 | (0.2686)                      |
| 015             | -0.0439<br>(0.1170)    | -0.2333**<br>(0.1015) | -0.2495*<br>(0.1501)  | -0.3815**<br>(0.1548) | -0.2542<br>(0.1694)           | -0.2876**<br>(0.1406)  | -0.4829***<br>(0.0390) | -0.0318<br>(0.0358)    | 0.0011 (0.0812)         | 0.0014                                   | -0.0662                       |
| 016             | -0.1847                | -0.2192**             | -0.3057*              | -0.6060***            | -0.2881**                     | -0.5071***             | -0.3628***             | -0.0510                | -0.0789                 | (0.0908)<br>-0.1842**                    | (0.3251)<br>-0.7029**         |
| .010            | (0.1461)               | (0.1046)              | (0.1765)              | (0.1470)              | (0.1452)                      | (0.1433)               | (0.0386)               | (0.0385)               | (0.0812)                | (0.0902)                                 | (0.2970)                      |
| 017             | -0.1659                | -0.1523*              | -0.0767               | -0.2100*              | -0.1051                       | -0.2156**              | -0.1566***             | -0.0010                | 0.0276                  | -0.0186                                  | -0.1445                       |
|                 | (0.1356)               | (0.0811)              | (0.1479)              | (0.1107)              | (0.1258)                      | (0.1066)               | (0.0421)               | (0.0416)               | (0.0878)                | (0.0988)                                 | (0.3295)                      |
| 018             | 0.0298                 | -0.1319**             | -0.0989               | -0.0288               | 0.0117                        | -0.1112*               | -0.0926***             | -0.0056                | -0.0413                 | -0.1219*                                 | -0.2029                       |
|                 | (0.0765)               | (0.0531)              | (0.0833)              | (0.0625)              | (0.0714)                      | (0.0604)               | (0.0242)               | (0.0275)               | (0.0552)                | (0.0622)                                 | (0.2069)                      |
| 019             | -0.0154                | -0.1090***            | -0.0272               | -0.0224               | 0.0095                        | -0.0971**              | -0.0158                | -0.0458**              | -0.0793**               | -0.1707***                               | -0.0413                       |
|                 | (0.0514)               | (0.0356)              | (0.0558)              | (0.0416)              | (0.0477)                      | (0.0403)               | (0.0157)               | (0.0185)               | (0.0359)                | (0.0400)                                 | (0.1236)                      |
| 020             | -0.0444*               | -0.0289               | 0.0112                | -0.0095               | 0.0097                        | -0.0518**              | -0.2137***             | -0.0742***             | 0.0082                  | -0.0193                                  | 0.0350                        |
|                 | (0.0262)               | (0.0182)              | (0.0287)              | (0.0216)              | (0.0245)                      | (0.0208)               | (0.0100)               | (0.0120)               | (0.0229)                | (0.0258)                                 | (0.0782)                      |
| 021             | -                      | -                     | -                     | -                     | -                             | -                      | -                      | -                      | -                       | -                                        | -                             |
| 009 1.vozr      | 0 1111                 | -0.3342**             | -0 1467               | 0.0523                | -0.1228                       | -0.4114***             | 0.0667                 | -0.0212                | -0.0863                 | -0.0622                                  | 0 41 22                       |
| 009_1-year      | 0.1111<br>(0.1697)     | -0.3342** (0.1309)    | -0.1467<br>(0.2116)   | (0.1681)              | -0.1228<br>(0.1734)           | -0.4114***             | (0.0667                | -0.0212<br>(0.0412)    | -0.0863<br>(0.0781)     | -0.0622<br>(0.0896)                      | 0.4133<br>(0.3068)            |
| 009_2-year      | 0.0756                 | -0.2743**             | -0.0734               | 0.0472                | -0.0990                       | -0.4309***             | 0.0312                 | -0.0049                | -0.0754                 | -0.0692                                  | 0.5894*                       |
| ,               | (0.1708)               | (0.1327)              | (0.2128)              | (0.1704)              | (0.1755)                      | (0.1487)               | (0.0533)               | (0.0483)               | (0.1005)                | (0.1143)                                 | (0.3523)                      |
| 009_3-year      | 0.0121                 | 0.0192                | -0.1218               | 0.0466                | -0.0578                       | -0.3805**              | -0.0404                | -0.0844                | -0.1884                 | -0.0622                                  | 0.6701                        |
|                 | (0.1721)               | (0.1347)              | (0.2143)              | (0.1723)              | (0.1773)                      | (0.1503)               | (0.0600)               | (0.0551)               | (0.1225)                | (0.1368)                                 | (0.5926)                      |
| 009_4-year      | 0.0469                 | 0.0296                | -0.0316               | 0.0027                | -0.0240                       | -0.3734**              | -0.0515                | -0.0711                | -0.0416                 | -0.0161                                  | 0.5392                        |
|                 | (0.1726)               | (0.1355)              | (0.2152)              | (0.1741)              | (0.1794)                      | (0.1514)               | (0.0637)               | (0.0604)               | (0.1373)                | (0.1531)                                 | (0.7049)                      |
| 009_5-year      | 0.0657                 | 0.0194                | -0.0920               | -0.0149               | 0.0927                        | -0.3820**              | -0.0471                | -0.0173                | -0.0347                 | 0.0394                                   | 0.7433                        |
|                 | (0.1729)               | (0.1360)              | (0.2158)              | (0.1750)              | (0.1812)                      | (0.1522)               | (0.0656)               | (0.0641)               | (0.1446)                | (0.1617)                                 | (0.7575)                      |
| 009_6-year      | -0.0061                | -0.1275               | -0.1347               | -0.2136               | -0.2186                       | -0.4334*               | 0.0741                 | 0.0022                 | -0.1515                 | -0.0294                                  | -0.0176                       |
| 000 7           | (0.2290)               | (0.1786)              | (0.2736)              | (0.2535)              | (0.2682)                      | (0.2290)               | (0.0772)               | (0.0730)               | (0.1679)                | (0.1893)                                 | (0.8746)                      |
| 009_7-year      | 0.2324                 | 0.0599                | 0.0761                | 0.1337                | -0.0153                       | -0.1280                | -0.0368                | 0.0347                 | -0.0862                 | 0.0760                                   | 0.9488                        |
| 000 8.000       | (0.2238)               | (0.1747)              | (0.2922)              | (0.2440)<br>-0.4527** | (0.2486)                      | (0.2227)<br>-0.6236*** | (0.0779)<br>-0.1664**  | (0.0726)               | (0.1663)                | (0.1886)                                 | (0.8893)                      |
| 009_8-year      | 0.0367<br>(0.2438)     | 0.0054                | -0.2386               | -0.4527**<br>(0.2298) | -0.1878<br>(0.2284)           |                        | -0.1664**<br>(0.0796)  | -0.0865<br>(0.0736)    | -0.2962*<br>(0.1721)    | -0.2179<br>(0.1953)                      | -0.3235                       |
| 009_9-year      | -0.1238                | (0.1671)<br>0.0509    | (0.2855)<br>0.0504    | -0.2298)              | (0.2284)<br>-0.1022           | (0.2114)<br>-0.4340*** | -0.0088                | -0.0535                | (0.1721)<br>-0.1754     | (0.1953)<br>0.0235                       | (0.9660)<br>-0.0081           |
| 000_0 year      | -0.1238 (0.1512)       | (0.1217)              | (0.2048)              | -0.2288<br>(0.1755)   | -0.1022 (0.1836)              | (0.1492)               | -0.0088 (0.0633)       | -0.0535 (0.0611)       | -0.1754 (0.1456)        | (0.1647)                                 | -0.0081 (0.9218)              |
| 009_10-year     | 0.0911                 | 0.0690                | -0.0507               | -0.0561               | 0.0457                        | -0.3384**              | -0.0050                | -0.0478                | -0.1954                 | -0.0755                                  | -0.0308                       |
|                 | (0.1715)               | (0.1353)              | (0.2142)              | (0.1750)              | (0.1820)                      | (0.1513)               | (0.0629)               | (0.0621)               | (0.1493)                | (0.1694)                                 | (0.9311)                      |
| 009_11-year     | 0.0472                 | 0.0059                | -0.0363               | -0.0487               | 0.0887                        | -0.3782**              | 0.0696                 | 0.0481                 | -0.2368                 | -0.1119                                  | 0.0116                        |
|                 | (0.1728)               | (0.1362)              | (0.2157)              | (0.1763)              | (0.1838)                      | (0.1525)               | (0.0658)               | (0.0666)               | (0.1578)                | (0.1777)                                 | (0.9433)                      |
| 009_12-year     | 0.0169                 | 0.0432                | -0.0177               | -0.0024               | 0.1462                        | -0.3574**              | -0.0557                | -0.0894                | -0.1969                 | -0.2043                                  | 0.2649                        |
|                 |                        | (0.1367)              | (0.2165)              | (0.1776)              | (0.1859)                      | (0.1534)               | (0.0683)               | (0.0708)               | (0.1681)                | (0.1852)                                 | (0.9772)                      |

Figure 11: Fixed effect estimation part1

| 2009_0-year                | 0.0507              | 0.0054    | -0.2300    | -0.4327    | -0.10/0   | -0.0250    | -0.1004    | -0.0000  | -0.2902  | -0.21/3   | -0.5255  |
|----------------------------|---------------------|-----------|------------|------------|-----------|------------|------------|----------|----------|-----------|----------|
|                            | (0.2438)            | (0.1671)  | (0.2855)   | (0.2298)   | (0.2284)  | (0.2114)   | (0.0796)   | (0.0736) | (0.1721) | (0.1953)  | (0.9660) |
| 2009_9-year                | -0.1238             | 0.0509    | 0.0504     | -0.2288    | -0.1022   | -0.4340*** | -0.0088    | -0.0535  | -0.1754  | 0.0235    | -0.0081  |
|                            | (0.1512)            | (0.1217)  | (0.2048)   | (0.1755)   | (0.1836)  | (0.1492)   | (0.0633)   | (0.0611) | (0.1456) | (0.1647)  | (0.9218) |
| 2000 10 year               | 0.0911              | 0.0690    | -0.0507    | -0.0561    | 0.0457    | -0.3384**  | -0.0050    | -0.0478  | -0.1954  | -0.0755   | -0.0308  |
| 2009_10-year               |                     |           |            |            |           |            |            |          |          |           |          |
|                            | (0.1715)            | (0.1353)  | (0.2142)   | (0.1750)   | (0.1820)  | (0.1513)   | (0.0629)   | (0.0621) | (0.1493) | (0.1694)  | (0.9311) |
| 2009_11-year               | 0.0472              | 0.0059    | -0.0363    | -0.0487    | 0.0887    | -0.3782**  | 0.0696     | 0.0481   | -0.2368  | -0.1119   | 0.0116   |
|                            | (0.1728)            | (0.1362)  | (0.2157)   | (0.1763)   | (0.1838)  | (0.1525)   | (0.0658)   | (0.0666) | (0.1578) | (0.1777)  | (0.9433) |
| 2009_12-year               | 0.0169              | 0.0432    | -0.0177    | -0.0024    | 0.1462    | -0.3574**  | -0.0557    | -0.0894  | -0.1969  | -0.2043   | 0.2649   |
|                            | (0.1734)            | (0.1367)  | (0.2165)   | (0.1776)   | (0.1859)  | (0.1534)   | (0.0683)   | (0.0708) | (0.1681) | (0.1852)  | (0.9772) |
| 2010_1-year                | 0.0881              | -0.0064   | -0.4654**  | -0.0215    | -0.1758   | -0.4792*** | -0.0068    | 0.0375   | -0.0984  | -0.1080   | -0.0585  |
| 2010_1-year                |                     |           |            |            |           |            |            |          |          |           |          |
|                            | (0.1629)            | (0.1214)  | (0.1845)   | (0.1655)   | (0.1703)  | (0.1391)   | (0.0471)   | (0.0430) | (0.0858) | (0.0975)  | (0.2707) |
| 2010_2-year                | -0.0214             | 0.3265*** | -0.4131**  | -0.0517    | -0.1658   | -0.5066*** | -0.0818    | -0.0984* | -0.1495  | -0.1808   | 0.1538   |
|                            | (0.1659)            | (0.1259)  | (0.1883)   | (0.1699)   | (0.1749)  | (0.1427)   | (0.0613)   | (0.0580) | (0.1280) | (0.1425)  | (0.4754) |
| 2010_3-year                | -0.0185             | 0.3201**  | -0.3766**  | -0.0658    | -0.1268   | -0.4440*** | -0.1228*   | -0.0464  | -0.0408  | -0.0031   | -0.1008  |
|                            | (0.1673)            | (0.1271)  | (0.1908)   | (0.1729)   | (0.1783)  | (0.1450)   | (0.0687)   | (0.0688) | (0.1520) | (0.1685)  | (0.6298) |
| 2010_4-year                | 0.0089              | 0.3366*** | -0.4083**  | -0.0522    | 0.1153    | -0.4324*** | -0.1104    | 0.0249   | 0.0439   | -0.0492   | -0.0026  |
| 2010_1 year                |                     |           |            |            |           |            |            |          |          | (0.1785)  |          |
|                            | (0.1678)            | (0.1276)  | (0.1919)   | (0.1739)   | (0.1804)  | (0.1458)   | (0.0711)   | (0.0751) | (0.1608) |           | (0.6625) |
| 2010_5-year                | -0.0421             | 0.1760    | -0.4882*   | -0.2532    | -0.1384   | -0.5188**  | 0.0212     | 0.1064   | -0.0021  | -0.0964   | -0.2940  |
|                            | (0.2255)            | (0.1726)  | (0.2561)   | (0.2534)   | (0.2695)  | (0.2253)   | (0.0833)   | (0.0873) | (0.1890) | (0.2115)  | (0.7839) |
| 2010_6-year                | 0.1320              | 0.2285    | -0.3539    | -0.0702    | -0.2836   | -0.2897    | 0.0321     | 0.0671   | 0.0553   | 0.0520    | 0.1412   |
|                            | (0.2339)            | (0.1737)  | (0.2728)   | (0.2409)   | (0.2598)  | (0.2188)   | (0.0814)   | (0.0830) | (0.1828) | (0.2042)  | (0.7601) |
| 2010_7-year                | 0.1887              | 0.3400**  | -0.4786*   | -0.3137    | -0.2845   | -0.4867**  | -0.2143**  | -0.0313  | -0.0833  | -0.1129   | -0.1376  |
| 2010_/ year                |                     |           |            |            |           |            |            |          |          |           |          |
|                            | (0.2162)            | (0.1535)  | (0.2468)   | (0.2249)   | (0.2366)  | (0.1961)   | (0.0858)   | (0.0838) | (0.1884) | (0.2115)  | (0.7883) |
| 2010_8-year                | -0.1921             | 0.3273*** | -0.5050*** | -0.6785*** | -0.3680** | -0.8073*** | -0.2160*** | -0.0589  | 0.0091   | -0.0801   | -0.5887  |
|                            | (0.1554)            | (0.1254)  | (0.1952)   | (0.1937)   | (0.1859)  | (0.1660)   | (0.0688)   | (0.0683) | (0.1585) | (0.1766)  | (0.7189) |
| 2010_9-year                | -0.1217             | 0.3838*** | -0.3161*   | -0.2573    | -0.1048   | -0.5120*** | -0.0524    | 0.0137   | 0.1823   | 0.0547    | -0.2543  |
|                            | (0.1415)            | (0.1097)  | (0.1742)   | (0.1705)   | (0.1798)  | (0.1387)   | (0.0595)   | (0.0577) | (0.1388) | (0.1518)  | (0.6437) |
| 2010_10-year               | 0.0557              | 0.3379*** | -0.4040**  | -0.0551    | 0.0476    | -0.4657*** | 0.0126     | 0.0139   | 0.0437   | -0.0603   | -0.0637  |
| 2010_10 year               |                     | (0.1248)  |            |            |           | (0.1409)   | (0.0594)   |          | (0.1430) |           |          |
|                            | (0.1629)            | . ,       | (0.1852)   | (0.1700)   | (0.1782)  | . ,        |            | (0.0588) | . ,      | (0.1571)  | (0.6690) |
| 2010_11-year               | -0.0200             | 0.3239**  | -0.3652*   | 0.0228     | 0.1356    | -0.4607*** | 0.0052     | 0.0545   | -0.0355  | -0.1090   | 0.2377   |
|                            | (0.1662)            | (0.1270)  | (0.1893)   | (0.1734)   | (0.1817)  | (0.1446)   | (0.0663)   | (0.0686) | (0.1628) | (0.1778)  | (0.7320) |
| 2011_1-year                | -0.0383             | 0.4672*** | -0.1550    | 0.1298     | 0.1224    | -0.1655    | 0.0536     | -0.0903* | -0.0543  | -0.0957   | 0.0255   |
|                            | (0.1610)            | (0.1117)  | (0.2080)   | (0.1791)   | (0.1766)  | (0.1497)   | (0.0526)   | (0.0483) | (0.0964) | (0.1094)  | (0.3318) |
| 2011_2-year                | -0.0688             | 0.3786*** | -0.1104    | 0.0757     | 0.1401    | -0.1572    | -0.0056    | -0.0728  | -0.0152  | -0.0864   | 0.0847   |
| Lorr_L year                |                     | (0.1159)  |            |            | (0.1820)  |            |            |          |          |           |          |
|                            | (0.1650)            | . ,       | (0.2128)   | (0.1846)   |           | (0.1545)   | (0.0680)   | (0.0669) | (0.1432) | (0.1580)  | (0.5088) |
| 2011_3-year                | -0.0325             | 0.3903*** | -0.1314    | 0.0836     | 0.3783**  | -0.1265    | -0.0064    | -0.0603  | 0.0641   | 0.0672    | 0.4960   |
|                            | (0.1672)            | (0.1178)  | (0.2162)   | (0.1876)   | (0.1857)  | (0.1569)   | (0.0757)   | (0.0813) | (0.1687) | (0.1856)  | (0.6149) |
| 2011_4-year                | -0.0798             | 0.2494    | -0.1730    | -0.0546    | 0.2438    | -0.1793    | 0.1578*    | 0.0295   | 0.1635   | 0.1055    | 0.2730   |
|                            | (0.2252)            | (0.1655)  | (0.2752)   | (0.2633)   | (0.2734)  | (0.2329)   | (0.0882)   | (0.0961) | (0.1986) | (0.2197)  | (0.7296) |
| 2011_5-year                | 0.1154              | 0.3154*   | -0.0616    | 0.1561     | 0.2176    | 0.0606     | 0.2012**   | 0.0431   | 0.1730   | 0.1856    | 1.0088   |
| , ,                        | (0.2341)            | (0.1670)  | (0.2920)   | (0.2521)   | (0.2667)  | (0.2271)   | (0.0886)   | (0.0981) | (0.2014) | (0.2235)  | (0.7602) |
| 2011 Curren                |                     |           |            |            |           |            |            |          |          |           |          |
| 2011_6-year                | 0.0779              | 0.2962*   | -0.2151    | -0.2535    | -0.1371   | -0.2046    | 0.0653     | -0.0376  | 0.0211   | -0.0998   | 0.3096   |
|                            | (0.2281)            | (0.1512)  | (0.2654)   | (0.2336)   | (0.2551)  | (0.2039)   | (0.0898)   | (0.0936) | (0.2011) | (0.2208)  | (0.8054) |
| 2011_7-year                | -0.0384             | 0.4702*** | -0.0544    | -0.2436    | -0.0087   | -0.1999    | -0.0463    | -0.0437  | 0.0494   | -0.0400   | 0.6851   |
|                            | (0.1183)            | (0.1052)  | (0.1940)   | (0.2025)   | (0.2019)  | (0.1642)   | (0.0734)   | (0.0757) | (0.1649) | (0.1798)  | (0.6718) |
| 2011_8-year                | -0.1726             | 0.4563*** | -0.1835    | -0.4126**  | 0.0496    | -0.4180**  | -0.0517    | -0.0645  | 0.0490   | -0.0711   | -0.0065  |
| = ,                        | (0.1509)            | (0.1126)  | (0.2149)   | (0.2031)   | (0.1887)  | (0.1723)   | (0.0642)   | (0.0637) | (0.1450) | (0.1569)  | (0.6324) |
| 2011_9-year                | -0.1420             | 0.4508*** | -0.0028    | 0.0047     | 0.3030    | -0.1533    | 0.1291**   | -0.0216  | 0.1956   | 0.0610    | 0.2108   |
| 2011_9-year                |                     |           |            |            |           |            |            |          |          |           |          |
|                            | (0.1391)            | (0.0968)  | (0.1983)   | (0.1831)   | (0.1846)  | (0.1489)   | (0.0608)   | (0.0578) | (0.1373) | (0.1461)  | (0.5937) |
| 2011_10-year               | 0.0243              | 0.4413*** | -0.0262    | 0.2242     | 0.5180*** | -0.0526    | 0.1123*    | -0.0804  | 0.1377   | -0.0824   | 0.6446   |
|                            | (0.1611)            | (0.1138)  | (0.2085)   | (0.1830)   | (0.1836)  | (0.1513)   | (0.0609)   | (0.0602) | (0.1443) | (0.1534)  | (0.6313) |
| 2012_1-year                | 0.0797              | 0.1175    | -0.1028    | 0.2091     | 0.2663*   | -0.0027    | 0.0230     | -0.0307  | 0.0448   | 0.1374    | -0.0365  |
|                            | (0.1680)            | (0.1176)  | (0.1800)   | (0.1473)   | (0.1539)  | (0.1569)   | (0.0506)   | (0.0517) | (0.1008) | (0.1143)  | (0.3126) |
| 2012_2-year                | 0.0980              | 0.0925    | -0.1308    | 0.2041     | 0.5132*** | -0.0342    | -0.0397    | -0.0005  | 0.1000   | 0.1586    | -0.2292  |
| Lore_L year                |                     |           |            |            |           |            | (0.0649)   |          |          | (0.1628)  |          |
| 2012 2                     | (0.1719)            | (0.1212)  | (0.1854)   | (0.1528)   | (0.1602)  | (0.1615)   |            | (0.0719) | (0.1423) |           | (0.4660) |
| 2012_3-year                | 0.0537              | -0.0632   | -0.1945    | 0.0312     | 0.4034    | -0.0745    | 0.0963     | 0.0589   | 0.1396   | 0.2229    | -0.3751  |
|                            | (0.2292)            | (0.1689)  | (0.2540)   | (0.2410)   | (0.2584)  | (0.2368)   | (0.0838)   | (0.0944) | (0.1895) | (0.2147)  | (0.6789) |
| 2012_4-year                | 0.2446              | -0.0172   | -0.0618    | 0.2577     | 0.4640*   | 0.1712     | 0.1336     | 0.1010   | 0.2154   | 0.4586**  | 0.3513   |
|                            | (0.2394)            | (0.1712)  | (0.2742)   | (0.2312)   | (0.2531)  | (0.2333)   | (0.0890)   | (0.1062) | (0.2056) | (0.2319)  | (0.7015) |
| 2012_5-year                | 0.2143              | -0.0499   | -0.2635    | -0.1498    | 0.1845    | -0.0929    | 0.0108     | 0.0900   | 0.1222   | 0.1837    | -0.2273  |
| zorz_o yea                 |                     |           |            |            |           |            |            |          |          |           |          |
| 2012 6                     | (0.2321)            | (0.1561)  | (0.2464)   | (0.2110)   | (0.2427)  | (0.2111)   | (0.0889)   | (0.1019) | (0.2026) | (0.2298)  | (0.7361) |
| 2012_6-year                | 0.0162              | -0.0218   | -0.1483    | -0.3336*   | -0.0443   | -0.1599    | 0.0236     | 0.0506   | 0.1140   | 0.3432*   | -0.2635  |
|                            | (0.1471)            | (0.1190)  | (0.1653)   | (0.1723)   | (0.2019)  | (0.1725)   | (0.0677)   | (0.0782) | (0.1585) | (0.1806)  | (0.6687) |
| 2012_7-year                | 0.1519              | 0.1565    | -0.0409    | -0.1442    | 0.1925    | -0.0691    | -0.1204**  | 0.0116   | 0.1340   | 0.3302**  | -0.2523  |
|                            | (0.1230)            | (0.1094)  | (0.1597)   | (0.1718)   | (0.1803)  | (0.1704)   | (0.0593)   | (0.0638) | (0.1327) | (0.1519)  | (0.6138) |
| 2012_8-year                | -0.0303             | 0.0739    | -0.1577    | -0.3228*   | 0.2974*   | -0.3107*   | -0.0708    | -0.0169  | 0.0910   | 0.3253**  | -0.9720* |
|                            | (0.1562)            |           | (0.1872)   | (0.1738)   |           |            | (0.0548)   |          |          |           |          |
| 2012 0                     |                     | (0.1178)  |            |            | (0.1675)  | (0.1790)   |            | (0.0556) | (0.1237) | (0.1420)  | (0.5751) |
| 2012_9-year                | 0.0013              | 0.0797    | 0.0675     | 0.1774     | 0.6054*** | -0.0092    | 0.0653     | 0.0269   | 0.3091** | 0.5356*** | -0.6842  |
|                            | (0.1480)            | (0.1033)  | (0.1694)   | (0.1512)   | (0.1634)  | (0.1570)   | (0.0560)   | (0.0583) | (0.1310) | (0.1452)  | (0.6321) |
| 2012 1                     |                     | 0.0046    | -0.2669    | 0.1264     | 0.2183    | 0.1038     | -0.0466    | 0.0400   | -0.0603  | -0.0803   | 0.1948   |
| 2013_1-year                | -0.0290             | 0.0946    | 0.2005     | 0.1201     |           |            |            |          |          |           |          |
| 2013_1-year                | -0.0290<br>(0.2060) | (0.1175)  | (0.1965)   | (0.1352)   | (0.1424)  | (0.1454)   | (0.0420)   | (0.0487) | (0.0913) | (0.1072)  | (0.3551) |
|                            | (0.2060)            | (0.1175)  | (0.1965)   | (0.1352)   | (0.1424)  | (0.1454)   | (0.0420)   | (0.0487) | (0.0913) | (0.1072)  | (0.3551) |
| 2013_1-year<br>2013_2-year |                     |           |            |            |           |            |            |          |          |           |          |

Figure 12: Fixed effect estimation part2

| 2012_7-year                           | 0.1519                 | 0.1565                | -0.0409               | -0.1442               | 0.1925                | -0.0691               | -0.1204**              | 0.0116                | 0.1340               | 0.3302**              | -0.2523               |
|---------------------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|----------------------|-----------------------|-----------------------|
|                                       | (0.1230)               | (0.1094)              | (0.1597)              | (0.1718)              | (0.1803)              | (0.1704)              | (0.0593)               | (0.0638)              | (0.1327)             | (0.1519)              | (0.6138)              |
| 2012_8-year                           | -0.0303                | 0.0739                | -0.1577               | -0.3228*              | 0.2974*               | -0.3107*              | -0.0708                | -0.0169               | 0.0910               | 0.3253**              | -0.9720*              |
|                                       | (0.1562)               | (0.1178)              | (0.1872)              | (0.1738)              | (0.1675)              | (0.1790)              | (0.0548)               | (0.0556)              | (0.1237)             | (0.1420)              | (0.5751)              |
| 2012_9-year                           | 0.0013                 | 0.0797                | 0.0675                | 0.1774                | 0.6054***             | -0.0092               | 0.0653                 | 0.0269                | 0.3091**             | 0.5356***             | -0.6842               |
| 2012 1                                | (0.1480)               | (0.1033)              | (0.1694)              | (0.1512)              | (0.1634)              | (0.1570)              | (0.0560)               | (0.0583)              | (0.1310)             | (0.1452)              | (0.6321)              |
| 2013_1-year                           | -0.0290<br>(0.2060)    | 0.0946<br>(0.1175)    | -0.2669<br>(0.1965)   | 0.1264<br>(0.1352)    | 0.2183 (0.1424)       | 0.1038<br>(0.1454)    | -0.0466<br>(0.0420)    | 0.0400 (0.0487)       | -0.0603<br>(0.0913)  | -0.0803<br>(0.1072)   | 0.1948<br>(0.3551)    |
| 2013_2-year                           | -0.1155                | -0.1090               | -0.3280               | -0.0259               | 0.1222                | 0.0366                | 0.0377                 | 0.0538                | -0.0781              | -0.1539               | 0.2221                |
| Lolo_L year                           | (0.2547)               | (0.1667)              | (0.2631)              | (0.2310)              | (0.2488)              | (0.2267)              | (0.0714)               | (0.0805)              | (0.1630)             | (0.1853)              | (0.6025)              |
| 2013_3-year                           | 0.0568                 | -0.0638               | -0.2103               | 0.2220                | 0.1967                | 0.2916                | 0.0867                 | 0.0439                | 0.0444               | 0.0344                | 0.9399                |
| _ /                                   | (0.2642)               | (0.1694)              | (0.2830)              | (0.2237)              | (0.2425)              | (0.2250)              | (0.0779)               | (0.0929)              | (0.1814)             | (0.2069)              | (0.6615)              |
| 2013_4-year                           | 0.0284                 | -0.0775               | -0.4039               | -0.1449               | 0.0135                | 0.0419                | -0.0434                | 0.0140                | -0.0788              | -0.1413               | 0.4031                |
|                                       | (0.2544)               | (0.1538)              | (0.2585)              | (0.2045)              | (0.2338)              | (0.2036)              | (0.0826)               | (0.0985)              | (0.1922)             | (0.2199)              | (0.7092)              |
| 2013_5-year                           | -0.1491                | -0.0659               | -0.3099*              | -0.3162*              | -0.1495               | -0.0248               | -0.0406                | 0.0129                | -0.0810              | -0.0504               | 0.2116                |
|                                       | (0.1792)               | (0.1159)              | (0.1859)              | (0.1667)              | (0.1957)              | (0.1655)              | (0.0626)               | (0.0811)              | (0.1552)             | (0.1797)              | (0.6319)              |
| 2013_6-year                           | -0.0981                | -0.0446               | -0.2598               | -0.3068*              | -0.2402               | 0.0076                | -0.0625                | 0.0374                | -0.0652              | -0.0696               | 0.1297                |
| 2013_7-year                           | (0.1756)<br>-0.0005    | (0.1131)<br>0.0583    | (0.1791)<br>-0.1956   | (0.1615)<br>-0.1569   | (0.1899)<br>-0.0090   | (0.1612)<br>0.0693    | (0.0479)<br>-0.1321*** | (0.0589)<br>0.0014    | (0.1188)<br>-0.1275  | (0.1373)<br>-0.0505   | (0.5710)<br>0.5630    |
| 2013_/-year                           | (0.1614)               | (0.1068)              | (0.1778)              | (0.1644)              | (0.1685)              | (0.1629)              | (0.0447)               | (0.0489)              | (0.1273)             | (0.1232)              | (0.4951)              |
| 2013_8-year                           | -0.2053                | -0.0054               | -0.3142               | -0.2826*              | 0.1441                | -0.1496               | -0.1839***             | -0.0456               | -0.0975              | -0.0604               | 0.0975                |
| ,,                                    | (0.1893)               | (0.1163)              | (0.2056)              | (0.1646)              | (0.1586)              | (0.1708)              | (0.0462)               | (0.0526)              | (0.1186)             | (0.1339)              | (0.5209)              |
| 2014_1-year                           | -0.0158                | 0.0199                | -0.0369               | 0.3320**              | 0.2662*               | 0.0666                | 0.0278                 | -0.0073               | 0.0221               | -0.0619               | -0.0028               |
|                                       | (0.1690)               | (0.1151)              | (0.1884)              | (0.1608)              | (0.1549)              | (0.1548)              | (0.0480)               | (0.0479)              | (0.1047)             | (0.1178)              | (0.4100)              |
| 2014_2-year                           | 0.1768                 | 0.0067                | 0.0543                | 0.5211***             | 0.3581**              | 0.2673*               | 0.0819                 | -0.0040               | 0.0853               | 0.0918                | 0.5966                |
|                                       | (0.1861)               | (0.1213)              | (0.2155)              | (0.1531)              | (0.1456)              | (0.1547)              | (0.0590)               | (0.0653)              | (0.1349)             | (0.1506)              | (0.4644)              |
| 2014_3-year                           | 0.1085                 | -0.0170               | -0.1478               | 0.1324                | 0.1912                | 0.0282                | -0.0627                | -0.0540               | -0.0741              | -0.1775               | 0.0278                |
| 2014 4 year                           | (0.1800)               | (0.1029)              | (0.1859)              | (0.1262)              | (0.1349)              | (0.1242)              | (0.0694)               | (0.0781)              | (0.1608)             | (0.1803)              | (0.5792)              |
| 2014_4-year                           | -0.0627<br>(0.0387)    | 0.0119<br>(0.0276)    | -0.0694<br>(0.0538)   | 0.0081<br>(0.0445)    | 0.1077**<br>(0.0487)  | -0.0235<br>(0.0404)   | -0.0153<br>(0.0446)    | -0.0181<br>(0.0608)   | 0.0268<br>(0.1144)   | -0.0014<br>(0.1294)   | 0.2277<br>(0.3715)    |
| 2014_5-year                           | -0.0185                | 0.0448***             | -0.0451               | 0.0243                | 0.0793**              | 0.0058                | -0.0286                | 0.0255                | -0.0171              | -0.0809               | 0.1375                |
| 2014_5 year                           | (0.0201)               | (0.0139)              | (0.0303)              | (0.0238)              | (0.0327)              | (0.0202)              | (0.0256)               | (0.0399)              | (0.0701)             | (0.0815)              | (0.2013)              |
| 2014_6-year                           | 0.0000                 | 0.0000                | 0.0000                | 0.0000                | 0.0000                | 0.0000                | 0.0000                 | 0.0000                | 0.0000               | 0.0000                | 0.0000                |
| _ ,                                   | (0.0000)               | (0.0000)              | (0.0000)              | (0.0000)              | (0.0000)              | (0.0000)              | (0.0000)               | (0.0000)              | (0.0000)             | (0.0000)              | (0.0000)              |
| 2014_7-year                           | 0.0840                 | 0.1437                | 0.1016                | 0.1872                | 0.2618                | 0.1011                | -0.1416***             | -0.0171               | 0.0365               | 0.0147                | 0.3699                |
|                                       | (0.1462)               | (0.1124)              | (0.1721)              | (0.1826)              | (0.2034)              | (0.1669)              | (0.0453)               | (0.0489)              | (0.1059)             | (0.1157)              | (0.4197)              |
| 2015_1-year                           | 0.1567                 | 0.0599                | 0.0648                | 0.4900***             | 0.2453*               | 0.3001**              | 0.1123**               | -0.0030               | 0.0445               | 0.1240                | 0.7088**              |
|                                       | (0.1833)               | (0.1186)              | (0.2113)              | (0.1487)              | (0.1399)              | (0.1514)              | (0.0461)               | (0.0451)              | (0.0979)             | (0.1100)              | (0.3119)              |
| 2015_2-year                           | 0.0881                 | -0.0150               | -0.1235               | 0.0829                | 0.0823                | 0.0385                | -0.0284                | -0.0469               | -0.0960              | -0.1226               | 0.0249                |
| 2015 2 1025                           | (0.1783)<br>-0.0993*** | (0.1013)              | (0.1823)              | (0.1226)              | (0.1301)              | (0.1216)              | (0.0626)               | (0.0650)              | (0.1402)             | (0.1574)              | (0.4877)              |
| 2015_3-year                           | (0.0378)               | 0.0172 (0.0273)       | -0.0253<br>(0.0511)   | -0.0544<br>(0.0432)   | -0.0031<br>(0.0423)   | -0.0057<br>(0.0396)   | -0.0258<br>(0.0432)    | -0.0620<br>(0.0546)   | -0.0525<br>(0.1087)  | -0.0126<br>(0.1224)   | 0.0811<br>(0.3814)    |
| 2015_4-year                           | -0.0163                | 0.0370***             | 0.0035                | -0.0024               | 0.0353                | 0.0296                | -0.0068                | -0.0246               | 0.0567               | -0.0381               | 0.0886                |
| 2010_1 (cd.                           | (0.0199)               | (0.0138)              | (0.0293)              | (0.0230)              | (0.0265)              | (0.0199)              | (0.0253)               | (0.0381)              | (0.0674)             | (0.0774)              | (0.1904)              |
| 2016_1-year                           | 0.1122                 | -0.0191               | -0.1070               | 0.0943                | 0.0377                | 0.0217                | -0.0703                | -0.0378               | -0.1561              | -0.2390**             | -0.3963               |
| _ ,                                   | (0.1750)               | (0.0978)              | (0.1772)              | (0.1165)              | (0.1237)              | (0.1170)              | (0.0491)               | (0.0443)              | (0.1006)             | (0.1130)              | (0.3769)              |
| 2016_2-year                           | -0.0669**              | -0.0070               | -0.0015               | -0.0626*              | -0.0586*              | -0.0228               | -0.0700**              | -0.0687*              | -0.1471*             | -0.2081**             | -0.0370               |
|                                       | (0.0325)               | (0.0234)              | (0.0414)              | (0.0361)              | (0.0324)              | (0.0341)              | (0.0356)               | (0.0407)              | (0.0880)             | (0.0983)              | (0.3085)              |
| 2016_3-year                           | -0.0244                | 0.0170                | 0.0067                | -0.0239               | -0.0341*              | 0.0131                | -0.0641***             | -0.0044               | -0.0777              | -0.1368*              | -0.1112               |
|                                       | (0.0195)               | (0.0137)              | (0.0273)              | (0.0213)              | (0.0202)              | (0.0192)              | (0.0248)               | (0.0332)              | (0.0646)             | (0.0721)              | (0.2216)              |
| 1-year_EverTreated                    | 0.2206*                | 0.3387***             | 0.9999***             | 1.0674***             | 0.8448***             | 1.1795***             | -0.0182                | 0.0594                | 0.3377               | 0.0934                | 0.6053**              |
| 2-year_EverTreated                    | (0.1193)<br>0.2906**   | (0.0624)<br>0.4495*** | (0.1248)<br>0.7935*** | (0.0858)<br>1.0604*** | (0.0842)<br>1.2092*** | (0.0873)<br>0.8847*** | (0.0986)<br>0.3919***  | (0.0926)<br>0.0044    | (0.2947)<br>0.4737   | (0.3436)<br>0.1651    | (0.2433)<br>1.1722*** |
| 2-year_Evenneated                     | (0.1194)               | (0.0688)              | (0.1270)              | (0.0892)              | (0.0893)              | (0.0904)              | (0.1053)               | (0.0992)              | (0.3050)             | (0.3636)              | (0.2642)              |
| 3-year EverTreated                    | 0.1975                 | 0.6063***             | 0.9647***             | 1.2027***             | 1.5793***             | 1.0358***             | 0.7986***              | -0.0714               | 0.6245**             | 0.5250                | 1.6380***             |
| ,                                     | (0.1226)               | (0.0709)              | (0.1299)              | (0.0925)              | (0.0948)              | (0.0926)              | (0.1119)               | (0.1048)              | (0.3166)             | (0.3701)              | (0.3034)              |
| 4-year_EverTreated                    | 0.2556**               | 0.7498***             | 1.1126***             | 1.4423***             | 2.1632***             | 1.2209***             | 1.0680***              | -0.1066               | 0.6771**             | 0.6083                | 1.6883***             |
|                                       | (0.1269)               | (0.0747)              | (0.1366)              | (0.0983)              | (0.1019)              | (0.0989)              | (0.1181)               | (0.1139)              | (0.3296)             | (0.3841)              | (0.3652)              |
| 5-year_EverTreated                    | 0.2578**               | 0.8686***             | 1.3696***             | 1.6088***             | 2.3789***             | 1.3568***             | 1.2898***              | 0.1002                | 0.5245               | 0.8178*               | 2.0242***             |
|                                       | (0.1309)               | (0.0798)              | (0.1496)              | (0.1101)              | (0.1172)              | (0.1099)              | (0.1228)               | (0.1318)              | (0.3414)             | (0.4251)              | (0.3813)              |
| 6-year_EverTreated                    | 0.2627*                | 0.9572***             | 1.5451***             | 1.7926***             | 2.4672***             | 1.5281***             | 1.4450***              | 0.0197                | 0.6830*              | 1.1271***             | 2.1185***             |
| 7 year EverTreated                    | (0.1398)               | (0.0873)              | (0.1683)              | (0.1225)              | (0.1339)              | (0.1178)              | (0.1311)               | (0.1519)              | (0.3654)             | (0.4323)              | (0.4506)              |
| 7-year_EverTreated                    | 0.3135**<br>(0.1495)   | 1.0540***<br>(0.0932) | 1.5890***<br>(0.1831) | 1.9746***<br>(0.1318) | 2.7222***<br>(0.1420) | 1.6650***<br>(0.1256) | 1.5043***<br>(0.1412)  | 0.1147<br>(0.1558)    | 0.8498**<br>(0.3806) | 1.2373***<br>(0.4352) | 2.1885***<br>(0.4848) |
| 8-year_EverTreated                    | 0.2634*                | 1.1571***             | 1.8217***             | 2.1606***             | 3.0497***             | 1.7872***             | 1.7235***              | 0.1218                | 0.6766*              | 0.9654**              | 2.2900***             |
| - ,                                   | (0.1529)               | (0.1020)              | (0.1824)              | (0.1544)              | (0.1564)              | (0.1349)              | (0.1474)               | (0.1597)              | (0.3943)             | (0.4514)              | (0.4760)              |
| 9-year_EverTreated                    | 0.2845*                | 1.2550***             | 1.9493***             | 2.2848***             | 3.2430***             | 1.9360***             | 1.7776***              | -0.0323               | 0.5512               | 1.0191**              | 2.4668***             |
|                                       | (0.1543)               | (0.1085)              | (0.2106)              | (0.1660)              | (0.1880)              | (0.1466)              | (0.1551)               | (0.1908)              | (0.4062)             | (0.4690)              | (0.5593)              |
| 10-year_EverTreated                   | 0.3646**               | 1.2331***             | 2.1382***             | 2.5330***             | 3.4489***             | 2.0419***             | 1.8231***              | 0.2406                | 0.6850               | 1.2735**              | 2.2528***             |
|                                       | (0.1727)               | (0.1237)              | (0.2360)              | (0.2023)              | (0.2670)              | (0.1560)              | (0.1689)               | (0.2162)              | (0.4432)             | (0.5025)              | (0.6772)              |
| 11-year_EverTreated                   | 0.3557*                | 1.2432***             | 2.1206***             | 2.7659***             | 3.9551***             | 2.0368***             | 1.8514***              | 0.1077                | 0.0440               | 1.3674***             | 2.3283***             |
|                                       | (0.2104)               | (0.1331)              | (0.2508)              | (0.2463)              | (0.2787)              | (0.1855)              | (0.1921)               | (0.2337)              | (0.5086)             | (0.5241)              | (0.6300)              |
| 12-year_EverTreated                   | 0.3995                 | 1.4368***             | 2.4861***             | 3.0249***             | 4.7880***             | 2.1169***             | 2.2443***              | 0.1659                | 0.3836               | 1.4507***             | 2.0160***             |
| 12 year EverTreated                   | (0.2496)               | (0.1732)              | (0.2375)              | (0.2734)              | (0.3807)              | (0.2343)              | (0.2164)               | (0.3419)              | (0.4925)             | (0.5318)              | (0.6996)              |
| 13-year_EverTreated                   | 0.2594                 | 1.6588***             | 2.5502***             | 3.0962***             | 5.5717***             | 2.5966***             | 2.5247***              | 0.3287<br>(0.3437)    | -0.2122              | 0.5096                | 0.5920 (1.4106)       |
| Constant                              | (0.2998)<br>1.8957***  | (0.2311)<br>1.3413*** | (0.3426)<br>2.9952*** | (0.4043)<br>3.2438*** | (0.6138)<br>1.9815*** | (0.3696)<br>4.5961*** | (0.2748)<br>3.1650***  | (0.3437)<br>1.8948*** | (0.6148)<br>0.0781*  | (0.9231)<br>1.4783*** | (1.4106)<br>3.3943*** |
| constant                              | (0.0893)               | (0.0835)              | (0.1096)              | (0.0934)              | (0.1212)              | (0.0835)              | (0.0247)               | (0.0182)              | (0.0414)             | (0.0453)              | (0.1840)              |
|                                       | (2.0000)               | (2.00000)             | (                     | (2.0004)              | (                     | (2.0000)              | (                      | (=:0102)              | (                    | (2.0.55)              | (                     |
| Observations                          | 371,741                | 373,293               | 498,713               | 679,084               | 544,950               | 718,585               | 435,395                | 388,234               | 155,887              | 144,472               | 9,015                 |
| R-squared                             | 0.0077                 | 0.0878                | 0.0980                | 0.0695                | 0.0177                | 0.1445                | 0.1784                 | 0.0037                | 0.0051               | 0.0196                | 0.0579                |
| Number of id                          | 87,581                 | 87,379                | 119,826               | 141,493               | 130,407               | 145,107               | 94,917                 | 120,942               | 58,111               | 54,999                | 4,240                 |
| Robust standard errors in parentheses |                        |                       |                       |                       |                       |                       |                        |                       |                      |                       |                       |

Robust standard errors in parentheses \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Figure 13: Fixed effect estimation part3

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | 1.436252    | .5484409  | 2.62  | 0.009 | .3613276   | 2.511177  |
| Post_avg | 3.057347    | 1.123304  | 2.72  | 0.006 | .855711    | 5.258983  |
| Tm7      | 1.829093    | 1.414203  | 1.29  | 0.196 | 9426935    | 4.60088   |
| Тmб      | 1.156194    | 1.006247  | 1.15  | 0.251 | 8160151    | 3.128402  |
| Tm5      | .6351281    | .463002   | 1.37  | 0.170 | 2723392    | 1.542595  |
| Tm4      | 1.078643    | .4042704  | 2.67  | 0.008 | .2862881   | 1.870999  |
| Tm3      | 1.37771     | .38349    | 3.59  | 0.000 | .6260833   | 2.12933   |
| Tm2      | 2.136584    | .7249843  | 2.95  | 0.003 | .7156406   | 3.557527  |
| Tm1      | 1.840413    | .5390058  | 3.41  | 0.001 | .7839809   | 2.89684   |
| Тр0      | 2.002711    | .492363   | 4.07  | 0.000 | 1.037697   | 2.96772   |
| Tp1      | 4.031387    | 1.023796  | 3.94  | 0.000 | 2.024784   | 6.037991  |
| Tp2      | 6.904813    | 2.431596  | 2.84  | 0.005 | 2.138972   | 11.6706   |
| Tp3      | 7.657446    | 3.146766  | 2.43  | 0.015 | 1.489898   | 13.82499  |
| Tp4      | -1.388337   | 1.50479   | -0.92 | 0.356 | -4.337671  | 1.56099   |
| Tp5      | 8639384     | 1.807602  | -0.48 | 0.633 | -4.406774  | 2.67889   |

ATT by Periods Before and After treatment Event Study:Dynamic effects

Figure 14: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | 3885644     | .6701471  | -0.58 | 0.562 | -1.702029  | .9248997  |
| Post_avg | .8011101    | .5856489  | 1.37  | 0.171 | 3467406    | 1.948961  |
| Tm7      | -2.918656   | 3.150502  | -0.93 | 0.354 | -9.093527  | 3.256215  |
| Ттб      | 4.541779    | 2.88109   | 1.58  | 0.115 | -1.105053  | 10.18861  |
| Tm5      | 8165663     | 1.369394  | -0.60 | 0.551 | -3.500529  | 1.867397  |
| Tm4      | -1.476122   | 1.100468  | -1.34 | 0.180 | -3.632999  | .6807552  |
| Tm3      | -1.34386    | .6407773  | -2.10 | 0.036 | -2.599761  | 0879598   |
| Tm2      | 5563672     | .5684018  | -0.98 | 0.328 | -1.670414  | .55768    |
| Tm1      | 1501587     | .4812967  | -0.31 | 0.755 | -1.093483  | .7931654  |
| Тр0      | 1421459     | .5167465  | -0.28 | 0.783 | -1.15495   | .8706586  |
| Tp1      | 2320259     | .5526329  | -0.42 | 0.675 | -1.315166  | .8511147  |
| Tp2      | 3439735     | .7003632  | -0.49 | 0.623 | -1.71666   | 1.028713  |
| ТрЗ      | 2.067439    | 1.349464  | 1.53  | 0.126 | 5774608    | 4.71234   |
| Tp4      | 2.231554    | 1.619058  | 1.38  | 0.168 | 9417414    | 5.404849  |
| Tp5      | 1.225813    | 1.61553   | 0.76  | 0.448 | -1.940568  | 4.392194  |

Figure 15: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | 78.28749    | 31.12943  | 2.51  | 0.012 | 17.27494   | 139.3     |
| Post_avg | 593.8372    | 164.2933  | 3.61  | 0.000 | 271.8282   | 915.8462  |
| Tm7      | -70.84302   | 65.34418  | -1.08 | 0.278 | -198.9153  | 57.22921  |
| Ттб      | 66.41246    | 63.37518  | 1.05  | 0.295 | -57.80062  | 190.6255  |
| Tm5      | 108.1449    | 42.97146  | 2.52  | 0.012 | 23.9224    | 192.3674  |
| Tm4      | 70.98093    | 39.79003  | 1.78  | 0.074 | -7.006105  | 148.968   |
| Tm3      | 174.3174    | 53.82694  | 3.24  | 0.001 | 68.81854   | 279.8163  |
| Tm2      | 109.6443    | 40.21066  | 2.73  | 0.006 | 30.83281   | 188.4557  |
| Tm1      | 89.35549    | 40.95052  | 2.18  | 0.029 | 9.093952   | 169.617   |
| Tp0      | 373.8425    | 145.2586  | 2.57  | 0.010 | 89.14092   | 658.5441  |
| Tp1      | 492.2595    | 190.9828  | 2.58  | 0.010 | 117.94     | 866.5789  |
| Tp2      | 654.0144    | 198.7974  | 3.29  | 0.001 | 264.3787   | 1043.65   |
| Tp3      | 1015.551    | 436.0835  | 2.33  | 0.020 | 160.8435   | 1870.259  |
| Tp4      | 326.0581    | 261.5884  | 1.25  | 0.213 | -186.6457  | 838.7619  |
| Tp5      | 701.2973    | 519.9316  | 1.35  | 0.177 | -317.7499  | 1720.345  |

Figure 16: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | 42.22892    | 11.49661  | 3.67  | 0.000 | 19.69598   | 64.76186  |
| Post_avg | 135.6918    | 39.01693  | 3.48  | 0.001 | 59.22005   | 212.1636  |
| Tm7      | 25.63844    | 25.50523  | 1.01  | 0.315 | -24.35088  | 75.62776  |
| Ттб      | 3.889645    | 20.5334   | 0.19  | 0.850 | -36.35507  | 44.13436  |
| Tm5      | 56.89902    | 30.88617  | 1.84  | 0.065 | -3.636756  | 117.4348  |
| Tm4      | 32.0578     | 10.48023  | 3.06  | 0.002 | 11.51693   | 52.59867  |
| Tm3      | 35.81361    | 9.202585  | 3.89  | 0.000 | 17.77688   | 53.85035  |
| Tm2      | 70.89633    | 17.97663  | 3.94  | 0.000 | 35.66279   | 106.1299  |
| Tm1      | 70.4076     | 14.85155  | 4.74  | 0.000 | 41.2991    | 99.51611  |
| Тр0      | 83.26355    | 16.39703  | 5.08  | 0.000 | 51.12596   | 115.4011  |
| Tp1      | 158.1978    | 28.96412  | 5.46  | 0.000 | 101.4291   | 214.9664  |
| Tp2      | 225.8608    | 54.25794  | 4.16  | 0.000 | 119.5172   | 332.2044  |
| Tp3      | 347.729     | 139.6399  | 2.49  | 0.013 | 74.03976   | 621.4183  |
| Tp4      | 27.17034    | 75.58666  | 0.36  | 0.719 | -120.9768  | 175.3175  |
| Tp5      | -28.07054   | 23.69046  | -1.18 | 0.236 | -74.50299  | 18.36191  |

Figure 17: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | 59.14638    | 18.64995  | 3.17  | 0.002 | 22.59316   | 95.6996   |
| Post_avg | 756.9941    | 383.936   | 1.97  | 0.049 | 4.49341    | 1509.495  |
| Tm7      | -22.17608   | 38.10039  | -0.58 | 0.561 | -96.85146  | 52.49931  |
| Tm6      | .9039112    | 21.95243  | 0.04  | 0.967 | -42.12205  | 43.92987  |
| Tm5      | 39.47283    | 26.34732  | 1.50  | 0.134 | -12.16698  | 91.11263  |
| Tm4      | 73.35303    | 42.05326  | 1.74  | 0.081 | -9.069843  | 155.7759  |
| Tm3      | 102.4739    | 39.53491  | 2.59  | 0.010 | 24.98688   | 179.9609  |
| Tm2      | 64.41203    | 26.94775  | 2.39  | 0.017 | 11.59541   | 117.2286  |
| Tm1      | 155.5851    | 50.70146  | 3.07  | 0.002 | 56.21205   | 254.9581  |
| Tp0      | 300.4411    | 139.6487  | 2.15  | 0.031 | 26.73456   | 574.1475  |
| Tp1      | 561.9801    | 226.8162  | 2.48  | 0.013 | 117.4285   | 1006.532  |
| Tp2      | 476.9174    | 144.7391  | 3.30  | 0.001 | 193.2339   | 760.601   |
| Tp3      | 553.9458    | 211.2185  | 2.62  | 0.009 | 139.9653   | 967.9264  |
| Tp4      | 215.6448    | 314.2638  | 0.69  | 0.493 | -400.3009  | 831.5905  |
| Tp5      | 2433.035    | 2010.466  | 1.21  | 0.226 | -1507.407  | 6373.477  |

Figure 18: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z    | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|------|-------|------------|-----------|
| Pre_avg  | 83.21357    | 12.9707   | 6.42 | 0.000 | 57.79146   | 108.6357  |
| Post_avg | 376.1731    | 95.65125  | 3.93 | 0.000 | 188.7001   | 563.6462  |
| Tm7      | 37.43369    | 29.16744  | 1.28 | 0.199 | -19.73344  | 94.60083  |
| Ттб      | 55.71239    | 19.36855  | 2.88 | 0.004 | 17.75073   | 93.67405  |
| Tm5      | 63.08412    | 20.81617  | 3.03 | 0.002 | 22.28517   | 103.8831  |
| Tm4      | 104.8926    | 36.73437  | 2.86 | 0.004 | 32.89452   | 176.8906  |
| Tm3      | 63.34759    | 11.69213  | 5.42 | 0.000 | 40.43143   | 86.26375  |
| Tm2      | 88.52385    | 15.9554   | 5.55 | 0.000 | 57.25183   | 119.7959  |
| Tm1      | 169.5008    | 39.28466  | 4.31 | 0.000 | 92.50425   | 246.4973  |
| Tp0      | 261.5836    | 144.4617  | 1.81 | 0.070 | -21.5562   | 544.7234  |
| Tp1      | 544.4148    | 233.0002  | 2.34 | 0.019 | 87.74267   | 1001.087  |
| Tp2      | 338.942     | 70.28151  | 4.82 | 0.000 | 201.1928   | 476.6912  |
| ТрЗ      | 630.4686    | 163.7136  | 3.85 | 0.000 | 309.5959   | 951.3413  |
| Tp4      | 125.8701    | 80.1981   | 1.57 | 0.117 | -31.31531  | 283.0555  |
| Tp5      | 355.7598    | 341.8476  | 1.04 | 0.298 | -314.2491  | 1025.769  |

Figure 19: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | -14.04505   | 11.9554   | -1.17 | 0.240 | -37.47722  | 9.387106  |
| Post_avg | -54.79477   | 50.6985   | -1.08 | 0.280 | -154.162   | 44.57247  |
| Tm7      | 18.35457    | 20.63909  | 0.89  | 0.374 | -22.09729  | 58.80644  |
| Ттб      | 14.38117    | 29.61003  | 0.49  | 0.627 | -43.65342  | 72.41576  |
| Tm5      | -25.9116    | 27.52623  | -0.94 | 0.347 | -79.86201  | 28.03882  |
| Tm4      | -13.51831   | 13.59272  | -0.99 | 0.320 | -40.15954  | 13.12293  |
| Tm3      | -12.32876   | 18.1349   | -0.68 | 0.497 | -47.87252  | 23.21499  |
| Tm2      | -54.00803   | 28.70805  | -1.88 | 0.060 | -110.2748  | 2.258706  |
| Tm1      | -25.28444   | 16.56563  | -1.53 | 0.127 | -57.75248  | 7.183602  |
| Tp0      | 16.23401    | 39.19112  | 0.41  | 0.679 | -60.57918  | 93.04721  |
| Tp1      | -79.33178   | 26.11502  | -3.04 | 0.002 | -130.5163  | -28.14728 |
| Tp2      | -217.3616   | 66.48054  | -3.27 | 0.001 | -347.6611  | -87.06218 |
| Tp3      | -325.017    | 212.3425  | -1.53 | 0.126 | -741.2007  | 91.16659  |
| Tp4      | -10.94526   | 61.15656  | -0.18 | 0.858 | -130.8099  | 108.9194  |
| Tp5      | 287.6531    | 111.1531  | 2.59  | 0.010 | 69.79693   | 505.5093  |

Figure 20: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | .6178716    | .8421622  | 0.73  | 0.463 | -1.032736  | 2.268479  |
| Post_avg | 1.488529    | 8.4291    | 0.18  | 0.860 | -15.0322   | 18.00926  |
| Tm7      | -5.469683   | 5.095384  | -1.07 | 0.283 | -15.45645  | 4.517085  |
| Tm6      | 8.249005    | 4.784763  | 1.72  | 0.085 | -1.128959  | 17.62697  |
| Tm5      | -1.243323   | 2.828835  | -0.44 | 0.660 | -6.787737  | 4.301092  |
| Tm4      | 1.070803    | 2.194822  | 0.49  | 0.626 | -3.23097   | 5.372576  |
| Tm3      | 3.280174    | 2.014878  | 1.63  | 0.104 | 6689143    | 7.229262  |
| Tm2      | -2.165686   | 2.035091  | -1.06 | 0.287 | -6.154391  | 1.823019  |
| Tm1      | .603811     | 1.970948  | 0.31  | 0.759 | -3.259175  | 4.466797  |
| Тр0      | 2.607481    | 1.664085  | 1.57  | 0.117 | 6540654    | 5.869027  |
| Tp1      | 3.695377    | 2.784259  | 1.33  | 0.184 | -1.761669  | 9.152424  |
| Tp2      | -1.200919   | 4.541122  | -0.26 | 0.791 | -10.10135  | 7.699516  |
| ТрЗ      | -6.423708   | 6.002945  | -1.07 | 0.285 | -18.18926  | 5.341848  |
| Tp4      | 8.764416    | 33.3778   | 0.26  | 0.793 | -56.65486  | 74.1837   |

Figure 21: Event study for number of employees

ATT by Periods Before and After treatment Event Study:Dynamic effects

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | .3588497    | .9127566  | 0.39  | 0.694 | -1.43012   | 2.14782   |
| Post_avg | 1.254001    | 1.886283  | 0.66  | 0.506 | -2.443046  | 4.951048  |
| Tm7      | -5.212667   | 6.00948   | -0.87 | 0.386 | -16.99103  | 6.565698  |
| Tm6      | 1.75519     | .6492223  | 2.70  | 0.007 | .4827378   | 3.027643  |
| Tm5      | 2.319011    | 1.131986  | 2.05  | 0.040 | .1003598   | 4.537662  |
| Tm4      | 1.253464    | 1.978278  | 0.63  | 0.526 | -2.623891  | 5.130818  |
| Tm3      | .8042881    | 1.770769  | 0.45  | 0.650 | -2.666355  | 4.274932  |
| Tm2      | 3865017     | 1.224583  | -0.32 | 0.752 | -2.786641  | 2.013638  |
| Tm1      | 1.979164    | .9136538  | 2.17  | 0.030 | .1884354   | 3.769892  |
| ТрØ      | 1283779     | .8171513  | -0.16 | 0.875 | -1.729965  | 1.473209  |
| Tp1      | 7.016527    | 7.292967  | 0.96  | 0.336 | -7.277426  | 21.31048  |
| Tp2      | .8348215    | 1.135703  | 0.74  | 0.462 | -1.391115  | 3.060758  |
| Тр3      | 2986165     | 1.759205  | -0.17 | 0.865 | -3.746594  | 3.149361  |
| Tp4      | -2.664075   | 4.558392  | -0.58 | 0.559 | -11.59836  | 6.27021   |
| Tp5      | 2.763727    | 1.068487  | 2.59  | 0.010 | .6695305   | 4.857924  |

Figure 22: Event study for number of employees

|          | Coefficient | Std. err. | z     | P> z  | [95% conf. | interval] |
|----------|-------------|-----------|-------|-------|------------|-----------|
| Pre_avg  | 94.83943    | 58.85691  | 1.61  | 0.107 | -20.51801  | 210.1969  |
| Post_avg | 135.7837    | 104.8455  | 1.30  | 0.195 | -69.70977  | 341.2772  |
| Tm6      | 45.37182    | 31.33666  | 1.45  | 0.148 | -16.0469   | 106.7905  |
| Tm5      | 381.7497    | 334.936   | 1.14  | 0.254 | -274.7128  | 1038.212  |
| Tm4      | 37.85092    | 35.68651  | 1.06  | 0.289 | -32.09335  | 107.7952  |
| Tm3      | 41.65159    | 22.43829  | 1.86  | 0.063 | -2.326652  | 85.62983  |
| Tm2      | 45.25653    | 19.59837  | 2.31  | 0.021 | 6.84443    | 83.66862  |
| Tm1      | 17.15606    | 39.58094  | 0.43  | 0.665 | -60.42116  | 94.73327  |
| Тр0      | 54.43865    | 55.04132  | 0.99  | 0.323 | -53.44035  | 162.3176  |
| Tp1      | 246.153     | 156.8081  | 1.57  | 0.116 | -61.18509  | 553.4912  |
| Tp2      | 269.7227    | 213.6239  | 1.26  | 0.207 | -148.9726  | 688.4179  |
| Тр3      | -27.17958   | 161.5282  | -0.17 | 0.866 | -343.769   | 289.4098  |

ATT by Periods Before and After treatment Event Study:Dynamic effects

Figure 23: Event study for number of employees